DOI QR코드

DOI QR Code

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens

  • Bibi, Fehmida (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Yasir, Muhammad (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Song, Geun-Cheol (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Sang-Yeol (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Chung, Young-Ryun (Division of Applied Life Science (BK 21), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • Received : 2011.06.30
  • Accepted : 2012.01.10
  • Published : 2012.03.01

Abstract

Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.

Keywords

References

  1. Agrios, G. N. 2005. Disease caused by oomycetes. Pages 409-428 in: Plant Pathology. 5th ed. Academic Press, New York.
  2. Al-Mallah, M. K., Davey, M. R. and Cooking, E. C. 1987. Enzymatic treatment of clover root hairs removes a barrier to Rhizobium host specificity. Biotechnology 5:1319-1322. https://doi.org/10.1038/nbt1287-1319
  3. Araujo, W. L., Marcon, J., Maccheroni, W, Jr., Van Elsas, J. D., Van Vuurde, J. W. L. and Azevedo, J. L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:4906-4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002
  4. Barbieri, E., Gioacchini, A. M., Zambonelli, A., Bertini, L. and Stocchi, V. 2005. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 19:3411-3415. https://doi.org/10.1002/rcm.2209
  5. Berg, G. and Hallmann, J. 2006. Control of plant pathogenic fungi with bacterial endophytes. Pages 53-69 in: Microbial root endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
  6. Brooks, D. S., Gonzalez, C. F., Appel, D. N. and Filer, T. H. 1994. Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4:373-381. https://doi.org/10.1006/bcon.1994.1047
  7. Chert, C., Bauske, E. M., Musson, G., Rodriguez-Kabana, R. and Kloepper, J. W. 1995. Biological control of Fusarium wilt of cotton by use of endophytic bacteria. Biol. Control 5:10-16.
  8. Chung, B. S., Aslam, Z., Kim, S. W., Kim, G. G., Kang, H. S., Ahn, J. W. and Chung, Y. R. 2008. A bacterial endophyte, Pseudomonas brassicacearum YC5480 isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. Plant Pathol. J. 24:461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
  9. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C. and Ait Barka, E. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  10. Conn, V. M., Walker, A. R. and Franco, C. M. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:208-218. https://doi.org/10.1094/MPMI-21-2-0208
  11. Coombs, J. T. and Franco, C. M. M. 2003. Isolation and identification of actinobacteria isolated from surface-sterilized wheat roots. Appl. Environ. Microbiol. 69:5303-5308.
  12. Coombs, J. T., Michelsen, P. P. and Franco, C. M. M. 2004. Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol. Control 29:359-366. https://doi.org/10.1016/j.biocontrol.2003.08.001
  13. Chung, E. J., Park, J. H., Park, T. S., Ahn, J.-W. and Chung, Y. R. 2010. Production of a phytotoxic compound, 3-phenyl propionic acid by a bacterial endophyte, Arthrobacter humicola YC6002 isolated from the root of Zoysia japonica. Plant Pathol. J. 26:245-252. https://doi.org/10.5423/PPJ.2010.26.3.245
  14. Dalton, D. A., Kramer, S., Azios, N., Fusaro, S., Cahill, E. and Kennedy, C. 2004. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 49:469-479. https://doi.org/10.1016/j.femsec.2004.04.010
  15. Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M. and Haygood, M. G. 2001. Evidence for the biosynthesis of Bryostatins by the bacterial symbiont "Candidatus Endobugula sertula" of the Bryozoan Bugula neritina. Appl. Environ. Microbiol. 67:4531-4537. https://doi.org/10.1128/AEM.67.10.4531-4537.2001
  16. Domenech, J., Ramos, S. B., Probanza, A., Lucas, G. J. A. and Gutierrez, M. F. J. 2007. Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil. 290:43-50. https://doi.org/10.1007/s11104-006-9089-0
  17. Dong, J., Hong, Y., Shao, Z. and Liu, Z. 2010. Molecular cloning, purification, and characterization of a novel, acidic, pH-stable endoglucanase from Martelella mediterranea. J. Microbiol. 48:393-398. https://doi.org/10.1007/s12275-010-9361-0
  18. Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280-300. https://doi.org/10.1128/MMBR.68.2.280-300.2004
  19. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid production. Plant Physiol. 26:192-195. https://doi.org/10.1104/pp.26.1.192
  20. Hallmann, J. and Berg, G. 2006. Spectrum and population dynamics of bacterial root endophytes. Pages 15-31 in: Microbial Root Endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
  21. Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56:713-718.
  22. Hendricks, C. W., Doyle, J. D., and Hugley, B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61:2016-2019.
  23. Hong, T. Y. and Meng, M. 2003. Biochemical characterization and antifungal activity of an endo-1,3-${\beta}$-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 61:472-478. https://doi.org/10.1007/s00253-003-1249-z
  24. Jensen, P. R. and Fenical, W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17:346-351. https://doi.org/10.1007/BF01574765
  25. Jensen, P. and Fenical, W. 2000. Marine microorganisms and drug discovery: current status and future potential. Pages 6-79 in: Drugs from the sea. N. Fusetani, ed., Karger, Basel, Switzerland.
  26. Jung, W. J. H., Kitamura, E., Myouga, H. and Kamei, Y. 2002. An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl. Environ. Microbiol. 68:2666-2675. https://doi.org/10.1128/AEM.68.6.2666-2675.2002
  27. Keel, C., Voisard, C., Berling, C. H., Kahr, G. and Defago, G. 1989. Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584-589. https://doi.org/10.1094/Phyto-79-584
  28. Kim, S. G., Jang, Y., Kim, H. Y., Koh, Y. J., and Kim, Y. H. 2010. Comparison of microbial fungicides in antagonistic activities related to the biological control of phytophthora blight in chili pepper caused by Phytophthora capsici. Plant Pathol. J. 26:340-345. https://doi.org/10.5423/PPJ.2010.26.4.340
  29. Kloepper, J. W., Ryu, C.-M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  30. Kloepper, J. W. and Ryu, C.-M. 2006. Bacterial endophytes as elicitors of induced systemic resistance. Pages 33-52 in: Microbial root endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
  31. Kobayashi, D. Y. and Palumbo, J. D. 2000. Bacterial endophytes and their effects on plants and uses in agriculture. Pages 199-233 in: Microbial Endophyte. C.W. James, and J. F. White, eds. Marcel Dekker Inc, New York.
  32. Kobayashi, S., Hodaka, S., Kawamura, Y., Ozaki, M. and Hayase, Y. 1998. Micacocidin A, B and C, novel antimycoplasma agents from Pseudomonas sp. J. Antbiotics 51:323-332. https://doi.org/10.7164/antibiotics.51.323
  33. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  34. Lemos, M. L., Toranzo, A. E. and Barja, J. L. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb. Ecol. 11:149-163. https://doi.org/10.1007/BF02010487
  35. Long, R. A. and Azam, F. 2001. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67:4975-4983. https://doi.org/10.1128/AEM.67.11.4975-4983.2001
  36. Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J. and Woese, C. R. 1996. The ribosomal database project (RDP). Nucleic Acids Res. 24:82-85. https://doi.org/10.1093/nar/24.1.82
  37. Manjula, K., Singh, S. D. and Kishore, K. G. 2002. Role of endophytic bacteria in biological control of plant diseases. Ann. Rev. Plant Pathol. 1:231-252.
  38. McCormack, P., Wildman, H. and Jeffries, O. 1995. The influence of moisture on the suppression of Pseudomonas syringae by Aureobasidium pullulans on an artificial leaf surface. FEMS Microbiol. Ecol. 16:159-166. https://doi.org/10.1111/j.1574-6941.1995.tb00279.x
  39. McSpadden-Gardener, B. B., Gutierrez, L. J., Joshi, R., Edema, R. and Lutton, E. 2005. Distribution and biocontrol potential of phlD (+) pseudomonads in corn and soybean fields. Phytopathology 95:715-724. https://doi.org/10.1094/PHYTO-95-0715
  40. Misaghi, I. J. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808-811. https://doi.org/10.1094/Phyto-80-808
  41. Mohamed, M., Cicirelli, E. M., Kan, J., Chen, F., Fuqua, C. and Hill, R. T. 2008. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges Nagl. Environ Microbiol. 10:75-86.
  42. Nathan, A. M., Jessica, M. K., Valerie, B., Martin, D. and David, H. S. 2004. Isolation and characterization of novel marinederived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol. 70:7520-7529. https://doi.org/10.1128/AEM.70.12.7520-7529.2004
  43. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
  44. O Sullivan, D. G. and O Gara, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56:662-676.
  45. Palacios, L., Arahal, D., Reguera, B. and Marin, I. 2006. Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int. J. Syst. Evol. Microbiol. 56:1991-1995. https://doi.org/10.1099/ijs.0.64238-0
  46. Perez-Miranda, S., Cabirol, N., George-Tellez, R., Zamudio-Rivera, L. S. and Fernandez, F. J. 2007. O-CAS, a fast and universal method for siderophore detection. J. Microbiol. Meth. 70:127-131. https://doi.org/10.1016/j.mimet.2007.03.023
  47. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  48. Romanenko, L. A., Uchino, M., Falsen, E., Frolova, G. M., Zhukova, N. V. and Mikhailov, V. V. 2005. Pseudomonas pachasterellae sp. nov., isolated from a marine sponge. Int. J. Syst. Evol. Microbiol. 55:919-924. https://doi.org/10.1099/ijs.0.63176-0
  49. Rosenblueth, M. and Martínez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  50. Ryu, C.-M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  51. Scher, F. M. and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567-1573. https://doi.org/10.1094/Phyto-72-1567
  52. Schulz, B. and Boyle, C. 2006. What are endophytes? Pages 1-13 in: Microbial Root Endophytes. B. Schulz, C. Boyle, and T. N. Sieber, eds. Springer-Verlag, Berlin.
  53. Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological controls of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 92:92-99.
  54. Sgroy, V., Cassan, F., Masciarelli, O., Florencia Del Papa, M., Lagares, A. and Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85:371-381. https://doi.org/10.1007/s00253-009-2116-3
  55. Shin, D, S., Park, M. S., Jung, S., Lee, M. S., Lee, K. H., Bae, K, S. and Kim, S, B. 2007. Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J. Microbiol. Biotechnol. 17:1361-1368.
  56. Smibert, R. and Krieg, N. R. 1994. Phenotypic characterization. Pages 607-654 in: Methods for General and Molecular Bacteriology, P. Gerhardt, R. G. E. Murray, W. A. Wood., and N. R. Krieg, eds. American Society for Microbiology, Washington, DC.
  57. Strobel, G. 2003. Endophytes as sources of bioactive products. Microbes. Infect. 5:53-544.
  58. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  59. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The Clustal X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  60. Thorsten, B., Gabriela, B., Thorsten, H., Lanfang, L., Andrea, S. and Meinhard, S. 2004. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol. 70:2560-2565. https://doi.org/10.1128/AEM.70.4.2560-2565.2003
  61. Wagner-Dobler, I., Rheims, H., Felske, A., El-Ghezal, A., Flade-Schroder, D., Laatsch, H., Lang, S., Pukall, R. and Tindall, B. J. 2004. Oceanibulbus indolifex gen. nov., sp. nov., a North Sea á-proteobacterium that produces bioactive metabolites. Int. J. Syst. Evol. Microbiol. 54:1177-1184. https://doi.org/10.1099/ijs.0.02850-0
  62. Wang, Y., Brown, H. N., Crowley, D. E. and Szaniszlo, P. J. 1993. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16:579-585. https://doi.org/10.1111/j.1365-3040.1993.tb00906.x
  63. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  64. Zhang, Z. and Yuen, G. Y. 1999. Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia C3. Phytopathology 89:817-822. https://doi.org/10.1094/PHYTO.1999.89.9.817

Cited by

  1. Diversity of antagonistic bacteria isolated from medicinal plant Peganum harmala L. vol.24, pp.6, 2017, https://doi.org/10.1016/j.sjbs.2015.09.021
  2. Mucilaginibacter gynuensis sp. nov., isolated from rotten wood vol.63, pp.Pt 9, 2013, https://doi.org/10.1099/ijs.0.050153-0
  3. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. vol.81, pp.3, 2017, https://doi.org/10.1007/s10725-016-0216-5
  4. Endophytic Microbiota Associated with the Root Tips and Leaves of Baccharis dracunculifolia vol.59, pp.0, 2016, https://doi.org/10.1590/1678-4324-2016160287
  5. Amorphus suaedae sp. nov., isolated from the root of a tidal flat plant, Suaeda maritima vol.63, pp.Pt 10, 2013, https://doi.org/10.1099/ijs.0.048959-0
  6. Chromobacterium rhizoryzae sp. nov., isolated from rice roots vol.66, pp.10, 2016, https://doi.org/10.1099/ijsem.0.001284
  7. Martelella endophytica sp. nov., an antifungal bacterium associated with a halophyte vol.63, pp.Pt 8, 2013, https://doi.org/10.1099/ijs.0.048785-0
  8. Development of root system architecture of Arabidopsis thaliana in response to colonization by Martelella endophytica YC6887 depends on auxin signaling vol.405, pp.1-2, 2016, https://doi.org/10.1007/s11104-015-2775-z
  9. Endophytic bacteria fromDatura metelfor plant growth promotion and bioprotection against Fusarium wilt in tomato vol.26, pp.8, 2016, https://doi.org/10.1080/09583157.2016.1188264
  10. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity vol.63, pp.Pt 4, 2013, https://doi.org/10.1099/ijs.0.043828-0
  11. Complete Genome Sequence ofMartelella endophyticaYC6887, Which Has Antifungal Activity Associated with a Halophyte vol.3, pp.3, 2015, https://doi.org/10.1128/genomeA.00366-15
  12. Paenibacillin A, a new 2(1H)-pyrazinone ring-containing natural product from the endophytic bacteriumPaenibacillussp. Xy-2 vol.30, pp.2, 2016, https://doi.org/10.1080/14786419.2015.1041941
  13. Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima vol.63, pp.Pt 6, 2013, https://doi.org/10.1099/ijs.0.045484-0
  14. Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia vol.64, pp.Pt 4, 2014, https://doi.org/10.1099/ijs.0.052860-0
  15. Martelella suaedae sp. nov. and Martelella limonii sp. nov., isolated from the root of halophytes vol.66, pp.10, 2016, https://doi.org/10.1099/ijsem.0.001288
  16. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs vol.97, 2016, https://doi.org/10.1016/j.biocontrol.2016.03.005
  17. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.12.2014.0136
  18. Gynuella sunshinyii gen. nov., sp. nov., an antifungal rhizobacterium isolated from a halophyte, Carex scabrifolia Steud vol.65, pp.Pt 3, 2015, https://doi.org/10.1099/ijs.0.000060
  19. The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum vol.9, pp.1, 2016, https://doi.org/10.1186/s13068-016-0592-0
  20. Diversity and antagonistic potential of bacteria isolated from marine grass Halodule uninervis vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-017-1066-1
  21. Halophytes-associated endophytic and rhizospheric bacteria: diversity, antagonism and metabolite production vol.28, pp.2, 2018, https://doi.org/10.1080/09583157.2018.1434868
  22. Microbial Flora Associated with the Halophyte–Salsola imbricate and Its Biotechnical Potential vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00065
  23. Interactions between Endophytes and Plants: Beneficial Effect of Endophytes to Ameliorate Biotic and Abiotic Stresses in Plants vol.62, pp.1, 2019, https://doi.org/10.1007/s12374-018-0274-5