• 제목/요약/키워드: Bacterial Inoculation

검색결과 347건 처리시간 0.028초

Culturing Simpler and Bacterial Wilt Suppressive Microbial Communities from Tomato Rhizosphere

  • Roy, Nazish;Choi, Kihyuck;Khan, Raees;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제35권4호
    • /
    • pp.362-371
    • /
    • 2019
  • Plant phenotype is affected by a community of associated microorganisms which requires dissection of the functional fraction. In this study, we aimed to culture the functionally active fraction of an upland soil microbiome, which can suppress tomato bacterial wilt. The microbiome fraction (MF) from the rhizosphere of Hawaii 7996 treated with an upland soil or forest soil MF was successively cultured in a designed modified M9 (MM9) medium partially mimicking the nutrient composition of tomato root exudates. Bacterial cells were harvested to amplify V3 and V4 regions of 16S rRNA gene for QIIME based sequence analysis and were also treated to Hawaii 7996 prior to Ralstonia solanacearum inoculation. The disease progress indicated that the upland MM9 $1^{st}$ transfer suppressed the bacterial wilt. Community analysis revealed that species richness was declined by successive cultivation of the MF. The upland MM9 $1^{st}$ transfer harbored population of phylum Proteobacteria (98.12%), Bacteriodetes (0.69%), Firmicutes (0.51%), Actinobacteria (0.08%), unidentified (0.54%), Cyanobacteria (0.01%), FBP (0.001%), OD1 (0.001%), Acidobacteria (0.005%). The family Enterobacteriaceae of Proteobacteria was the dominant member (86.76%) of the total population of which genus Enterobacter composed 86.76% making it a potential candidate to suppress bacterial wilt. The results suggest that this mixed culture approach is feasible to harvest microorganisms which may function as biocontrol agents.

고추 세균성 반점병균의 비병원성 돌연변이체 분리 및 생리적 특성 (Isolation and Characterization of Transposon \ulcorner¨ªKm-Mediated Nonpathogenic Mutants of Xanthomonas campestris pv. vesicatoria)

  • 윤영채;김용식;조용섭
    • 한국식물병리학회지
    • /
    • 제11권3호
    • /
    • pp.265-270
    • /
    • 1995
  • Transposon mutation of Xanthomonas campestris pv. vesicatoria (Xcv) was induced by using transposon omegon ($\Omega$)-Km (Tn $\Omega$Km), which was confirmed by resistance to kanamycin (KMr), and nonpathogenic mutants were selected through the inoculation test on pepper plants. The mutagenesis frequency was about 6$\times$10-8, and 53 out of 2,000 Kmr bacterial colonies tested were nonpathogenic to the pepper cultivar Cheung-Hong. Optimum conditions for the Tn $\Omega$Km mutagenesis of Xcv were Luria Bertani (LB) broth medium for culture of Xcv, yeast extract-dextrose-CaCO3 (YDC) agar medium for selection of Tn $\Omega$Km-mediated mutants, and over 1 to 2 in the ratio of the donor (Escherichia coli S17-1 with the plasmid pJFF350 $\Omega$Km) and the recipient (Xcv) in the culture for the mutagenesis. One of the 4 nonpathogenic mutants (WNP1, WNP3, WNP4 and WNP5), which had been reconfirmed through the inoculation on pepper cv. Dabokgun, showed no differences in the production of exoenzymes such as protease and polygalacturonase and extracellular polysaccharides in vitro and the bacterial growth rate from those of the wild type of Xcv.

  • PDF

세균 Stenotrophomonas sp. KTGBP10의 식물 바이러스 감염억제효과 (Inhibitory Effects of Bacterial Isolate Stenotrophomonas sp. KTGBP10 against Viral Infection to Tobacco Plants)

  • 김영숙;황의일;오정훈;김갑식;여운형
    • 한국연초학회지
    • /
    • 제26권2호
    • /
    • pp.79-84
    • /
    • 2004
  • During the screening of antiviral substances having inhibitory effects on tobacco mosaic virus (TMV) infection to tobacco plants, we found a bacterial isolate KTGBP10, which was identified as a Stenotrophomonas sp., strongly inhibited the infection of TMV. When the culture filtrate from KTGBP10 was applied on the upper surface of leaves of Xanthi-nc tobacco plants at the same time or 24 hours before TMV inoculation, almost complete inhibition of TMV infection was achieved. And $40\%$ inhibition was shown with application of the culture filtrate to the under surface of leaves. In field trials, transmission of TMV from diseased seedlings to the healthy ones during transplanting work was reduced by $87.1\~92.6\%$ when the culture filtrate or cell suspension was sprayed onto the tobacco seedlings, cv. NC82, 24 hours before transplanting. No toxic effect was observed on the tobacco plants. When the broth filtrate of KTGBP10 was supplied by soaking through the cut-leaves before and/or after virus inoculation, the TMV infection was also inhibited by $50.4\~65.3\%$.

EFFECT OF BACTERIAL INOCULATION ON NEUTRAL DETERGENT FIBRE DIGESTION AND ENERGY AVAILABILITY IN GERM-FREE CHICKENS

  • Muramatsu, T.;Niwa, N.;Furuse, M.;Okumura, J.;Ohmiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권1호
    • /
    • pp.159-164
    • /
    • 1992
  • The present study was done to examine whether inoculated and established bacteria in the digestive tract of germ-free (GF) chickens affect growth performance, energy availability, nitrogen utilization and neutral detergent fibre (NDF) digestibility of the host bird fed a high-fibre diet. Gnotobiotic (GB) chicks were made from GF birds by co-inoculating with Ruminococcus albus, and Staphylococcus warneri, only the latter of which was established in the chicken gut. No difference was detected among conventional (CV), GF and GB birds in body weight gain, food intake or food efficiency from 7 to 21 d of age. The amount of nitrogen retained was larger in CV than in GF and GB chicks. DE and ME values of the diet and NDF digestibility were higher in CV birds than in GF and GB counterparts. It was concluded, therefore, that the established bacterium S. warneri did not give any beneficial effects on the host bird as judged by growth performance, energy availability, nitrogen utilization, and NDF digestibility.

Xanthomonas campestris pv. vesicatoria와 토마토잎의 친화적, 불친화적 반응에서 병생성관련 단백질의 유도 (Differential Induction of Pathogenesis-Related Proteins in the Compatible and Incompatible Interactions of Tomato Leaves with Xanthomonas campestris pv. vesicatoria)

  • 김정동;황병국
    • 한국식물병리학회지
    • /
    • 제11권1호
    • /
    • pp.53-60
    • /
    • 1995
  • Inoculation with the compatible strain Ds 1 of Xanthomonas campestris pv. vesicatoria caused brownish ad water-soaked lesions, but incompatible strain Bv5-4a produced hypersensitive symptoms with local necrosis on tomato (cv. Kwangyang) leaves. Bacterial populations of the compatible strains Ds 1 propagated more greatly than the incompatible strain Bv5-4a at the frist onset, but no differences were observed 5 days after inoculation. The bacterial infection induced the synthesis and accumulation of soluble proteins in tomato leaves, especially in the incompatible interaction. Native-polyacrylamide gel electrophoresis distinguished the soluble proteins in the tomato leaves infected by the compatible or incompatible strains. A protein of low molecular weight occurred only in the incompatible interaction. Some pathogenesis-related (PR) proteins, especially the 15, 18, 23, 26 and 54 kDa proteins, were detected only in the infected tomato leaves. In the two-dimensional electrophoresis, some proteins with different molecular weights (Mr. 21∼29 kDa) and the pI 8∼9 appeared more distinctly only in the incompatible interaction. These data suggest that the de novo synthesis of some PR proteins in tomato may be significant in defense against X. c. pv. vesicatoria.

  • PDF

Post-Infectional Biochemical Changes in Mulberry Due to Xanthomonas campestris pv. mori Induced Bacterial Leaf Spot

  • Maji, M.D.;Sengupta, T.;Das, C.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.255-259
    • /
    • 2004
  • Post-infectional biochemical changes due to Xanthomonas campestris pv. mori (Xcm) infection in five elite mulberry varieties viz., $S_1$, $S_{1635}$, $V_1$, RF $S_{175}$ and JRH was studied under inoculated condition. It was revealed that total soluble sugar and protein content was significantly declined in all the varieties due to X. campestris infection. Total phenol content was at par prior to inoculation in all varieties, but it was significantly increased in $S_1$, RF $S_{175}$, $S_{1635}$ and JRH 7 days after inoculation. The correlation coefficient (r) between total soluble sugar and total phenol content was found positive (r = 0.825) and statistically significant. Similarly, correlation coefficient (r) between total soluble protein and phenol content was found positive (r = 0.897) and statistically significant. The present study indicates that X. campestris infected leaves are nutritionally inferior in quality and the duration of phenol production in a mulberry variety play decisive role on disease resistance.nce.

Dynamics Behavior of Phage-Host System Related to Microlunatus phosphovorus in Activated Sludge with Host Inoculation

  • Lee, Sang-Hyon;Otawa, Kenichi;Onuki, Motoharu;Satoh, Hiroyasu;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1518-1522
    • /
    • 2006
  • In the present study, it was observed how the phage-host system that is naturally reproduced in activated sludge is affected by the host inoculation. The system of Microlunatus phosphovorus and its phages was selected as the phage-host system native to an activated sludge system operated for 19 days under sequencing anaerobic-aerobic conditions with glutamate as the main carbon source. The phage-host system related to M. phosphovorus was monitored by plaque assay for the phages and by fluorescent in situ hybridization (FISH) for the bacterial host. In addition, the whole phage structure was also monitored by pulsed-field gel electrophoresis (PFGE). During the first 9 days, the phage-host system was more or less steady at approx. 9% (FISH/ DAPI) for M. phosphovorus and approx. 10,000 PFU/ml for its lytic phages. Microlunatus phosphovorus JCM9379 was inoculated into the activated sludge on day 10. Right after the inoculation, M. phosphovorus was approx. 24% (FISH/DAPI) whereas its lytic phages dropped down to approx. 500 PFU/ ml. After the host inoculation (within 9 days), however, the phage-host system eventually reverted to its original level in each population. On the other hand, the whole phage structure was not significantly changed by M. phosphovorus inoculation but stable throughout the process operation. Only the minor change that four phage groups gradually became abundant after the host inoculation was observed.

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

  • Sopheareth, Mao;Chan, Sarun;Naing, Kyaw Wai;Lee, Yong Seong;Hyun, Hae Nam;Kim, Young Cheol;Kim, Kil Yong
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.67-76
    • /
    • 2013
  • A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-keto-gluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phyto-phthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.