DOI QR코드

DOI QR Code

Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

  • Sopheareth, Mao (Ministry of Agriculture, Forestry and Fisheries) ;
  • Chan, Sarun (Ministry of Agriculture, Forestry and Fisheries) ;
  • Naing, Kyaw Wai (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Yong Seong (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Hyun, Hae Nam (Major of Plant Resources and Environment, Jeju National University) ;
  • Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Kil Yong (Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2012.07.24
  • Accepted : 2012.12.09
  • Published : 2013.03.01

Abstract

A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-keto-gluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phyto-phthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.

Keywords

References

  1. Babu, B. S., Pandravada, S. R., Prasada Rao, R. D. V. J., Anitha, K., Chakrabarty, S. K. and Varaprasad, K. S. 2011. Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot. 30:389-400. https://doi.org/10.1016/j.cropro.2010.12.011
  2. Bajpai, P. D. and Rao, W. B. S. 1971. Phosphate solubilizing bacteria II. Extracellular production of organic acids by selected bacteria solubilizing insoluble phosphates. Soil Sci. Plant Nutr. 17:44-45. https://doi.org/10.1080/00380768.1971.10432852
  3. Baldani, V. B., Alvarez, I., Baldani, I. and Dobereiner, J. 1986. Establishment of inoculated Azospirillum spp. in the rhizosphere and in the roots of field grown wheat and sorghum. Plant Soil 90:35-46. https://doi.org/10.1007/BF02277385
  4. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58:649-662. https://doi.org/10.1002/ps.520
  5. Booth, I. R. and Kroll, R. G. 1989. The preservation of foods by low pH. In: Mechanisms of action of food preservation procedures, ed. by G. W. Gould, pp. 119−160. Elsevier Applied Science, London, UK.
  6. Burr, T. J., Schroth, M. N. and Suslow, T. 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and Pseudomonas putida. Phytopathology 68:1377–1383. https://doi.org/10.1094/Phyto-68-1377
  7. Chae, D. H., Jin, R. D., Hwangbo, H., Kim, Y. W., Kim, Y. C., Park, R. D., Krishnan, H. B. and Kim, K. Y. 2005. Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. Biocontrol 51:339-335.
  8. Chapman, H. D. and Pratt, P. F. 1961. Methods of analysis for soils, plants and waters. University of the Califonia, Riverside, USA. 309 pp.
  9. Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. and Young, C. C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34:33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
  10. Chilpa, R. R., Vazquez, I. R. Q., Estrada, M. J., Ocana, A. N. and Hernandez, J. C. 1997. Antifungal activity of selected plant secondary metabolites against Coriolus versicolor. J. Tropic. Forest Products 3:110-113.
  11. Gyaneshwar, P., Kumar, G., Parekh, L. and Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. https://doi.org/10.1023/A:1020663916259
  12. Hwang, B. K. and Kim, D. H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79:221-227. https://doi.org/10.1094/PD-79-0221
  13. Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y. and Moon, S. S. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739-3745. https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  14. Hwangbo, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Suh, J. S. and Kim, K. Y. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47:87-92. https://doi.org/10.1007/s00284-002-3951-y
  15. Illmer, P. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24:389-395. https://doi.org/10.1016/0038-0717(92)90199-8
  16. Kang, J. G., Kim, S. T. and Kang, K. Y. 1999. Production of the antifungal compound phenylacetic acid by antagonistic bacterium Pseudomonas sp. Agri. Chem. Biotechnol. 42:197-201.
  17. Kim, K. D., Nenec, S. and Musson, G. 1997. Control of Phytophthora root and crown rot of bell pepper with composts and soil amendments in the green house. Appl. Soil Ecol. 5:169-179. https://doi.org/10.1016/S0929-1393(96)00138-2
  18. Kim, K. Y., Jordan, D. and Krishnan, H. B. 1997a. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153:273-277. https://doi.org/10.1016/S0378-1097(97)00246-2
  19. Kim, K. Y., McDonald, G. A. and Jordan, D. 1997b. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fertil. Soils 24:347-352. https://doi.org/10.1007/s003740050256
  20. Kim, K. Y., Jordan, D. and McDonald, G. A. 1998. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fertil. Soils 26:79-87.
  21. Kim, Y., Cho, J. Y., Kuk, J. H., Moon, J. I., Cho, J. I., Kim., Y. C. and Park, K. H. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 48:312-317. https://doi.org/10.1007/s00284-003-4193-3
  22. Kloepper, J. W., Lifshitz, R. and Schroth, M. N. 1988. Pseudomonas inoculants to benefit plant production. In: ISI Atlas of Science, Animal and Plant Sciences, pp. 60-64. Institute for Scientific Information, Philadelphia, USA.
  23. Knievel, D. P. 1973. Procedure for estimating ratio of live to dead root dry matter in root core samples. Crop Sci. 13:124-126. https://doi.org/10.2135/cropsci1973.0011183X001300010043x
  24. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Gabriele, H., Franke, P., Vater, J. and Borris R. 2004. Structural and functional characterization of gene clusters directing non-ribosomal synthesis of bioactive lipopeptides in Bacillus amy-loliquefaciens strain FZB42. J. Bacteriol. 186:1084-1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
  25. Krebs, H. A., Wiggins, D., Stubbs, M., Sol, A. and Bedoya, F. 1983. Studies on the antifungal action of benzoate. Biochem. J. 214:657-663.
  26. Lamour, K. H. and Hausbeck, M. K. 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis. 87:841-845. https://doi.org/10.1094/PDIS.2003.87.7.841
  27. Lee, S. J., Cho, J. Y., Cho, J. I., Moon, J. H., Park, K. D., Lee, Y. J. and Park, K. H. 2004. Isolation and characterization of antimicrobial substance macrolactin A produced from Bacillus amy-loliquefaciens CHO104 isolated from soil. J. Microbiol. Biotech. 14:525-531.
  28. Leyval, C. and Berthelin, J. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103-110. https://doi.org/10.1007/BF02206262
  29. Li, W., Roberts, D. P., Dery, P. D., Meyer, L. F., Lohrke, S., Lumsden, R. D. and Hebbar, K. P. 2002. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21:129-135. https://doi.org/10.1016/S0261-2194(01)00074-6
  30. Loper, J. E. and Gross, H. 2007. Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur. J. Plant Pathol. 119:265-278. https://doi.org/10.1007/s10658-007-9179-8
  31. Moghimi, A., Tate, M. E. and Oades, I. M. 1978. Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol. Biochem. 10:283-287. https://doi.org/10.1016/0038-0717(78)90023-8
  32. Na, J. H., Choi, J. H., Jin, R. D., Ko, H. S., Park, R. D. and Kim, K. Y. 2009. Phosphate solubilization and plant growth promotion by crop associated bacteria. Korean J. Soil Sci. Fert. 42:29-36.
  33. Olsen, S. R. and Sommers, L. E. 1982. Phosphorus. In: Method of soil analysis part 2, chemical and microbial properties, ed. by A. L. Page, R. H. Miller and D. R. Keeney, pp. 403-430. American Society of Agronomy, Madison, USA.
  34. Ortega-Morales, B. O., Ortega-Morales, F. N., Reyna, J. L., De la Rosa-García, S. C., Hernandez, A. M. and Montero, J. M. 2009. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi. Mar. Biotechnol. 11:375-383. https://doi.org/10.1007/s10126-008-9152-3
  35. Park, B. K., Na, J. H., Hoon, H. B., Lee, I. J., Kim, K. Y. and Kim, Y. W. 2005. Effect of phosphate bio fertilizer produced by Enterobacter intermedium on rhizosphere soil properties and lettuce growth. Korean J. Soil Sci. Fert. 38:15-24.
  36. Philippe, G., Vega, D. and Bastid, J. 2001. Microbial hydrolysis of methyl aromatic esters by Burkholderia cepacia isolated from soil. FEMS Microbiol. Ecol. 37:251-258. https://doi.org/10.1111/j.1574-6941.2001.tb00872.x
  37. Patel, D. K., Archana, G. and Kumar, G. N. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56:168-174. https://doi.org/10.1007/s00284-007-9053-0
  38. Paul, D. and Sarma, Y. 2006. Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici, foot rot pathogen of black pepper (Piper nigrum L.). Arch. Phytopathol. Plant Protect. 39:311-314. https://doi.org/10.1080/03235400500301190
  39. Ren, J. H., Ye, J. R., Liu, H., Xu, X. L. and Wu, X. Q. 2011. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World J. Microbiol. Biotechnol. 27:2203-2215. https://doi.org/10.1007/s11274-011-0686-6
  40. Richardson, A. E. 2001. Prospects for using soil microorganism to improve the acquisition of phosphate by plant. Aust. J. Plant Physiol. 28:897-906.
  41. Ristaino, J. B. and Johnston, S. A. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83:1080-1089. https://doi.org/10.1094/PDIS.1999.83.12.1080
  42. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  43. Rosenberger, D. A. and Meyer, F. W. 1981. Post-harvest fungicides for apples: development of resistance to benomyl, vinclozolin and iprodione. Plant Dis. 65:1010-1013. https://doi.org/10.1094/PD-65-1010
  44. Russell, A. D. and Chopra, I. 1996. Understanding antibacterial action and resistance. 2nd ed. Ellis Horwood, London, UK. 292 pp.
  45. Sivan, A. and Chet, I. 1992. Microbial control of plant diseases. In: Environmental Microbiology, ed. by R. Mitchell, pp. 335-354. Wiley-Liss, New York, USA.
  46. Sopheareth, M., Lee, S. J., Hwangbo, H., Kim, Y. W., Park, K. H., Cha, G. S., Park, R. D. and Kim, K. Y. 2006. Isolation and characterization of antifungal substances from Burkholderia Viruel, E., Lucca, M. E. and Sineriz, F. 2011. Plant growth promosp. culture broth. Curr. Microbiol. 53:358-364. https://doi.org/10.1007/s00284-005-0333-2
  47. Sperber, J. I. 1957. Solution of mineral phosphates by soil bacteria. Nature 180:994–995. https://doi.org/10.1038/180994a0
  48. Ta, F. L., Hsin, I. H., Shen, F. T. and Young, C. C. 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresource Technol. 97:957-960. https://doi.org/10.1016/j.biortech.2005.02.017
  49. Viruel, E., Lucca, M. E. and Sineriz, F. 2011. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch. Microbiol. 193:489-496. https://doi.org/10.1007/s00203-011-0692-y
  50. Wang, H. X., Lui, F. and Ng, T. B. 2001. Examination of pineal indoles and 6-methoxy-2-benzoxaolinone for antioxidant and antimicrobial effects. Comp. Biochem. Physiol. C Toxicol.Pharmacol. 130:379-388. https://doi.org/10.1016/S1532-0456(01)00264-2

Cited by

  1. Enhancement of antifungal activity ofBurkholderia pyrrociniaJK-SH007 genetically modified withBacillus subtilis Chi113gene vol.46, pp.6, 2016, https://doi.org/10.1111/efp.12283
  2. Identification and antifungal activity analysis of two biocontrol antagonists to Colletotrichum musae vol.165, pp.7-8, 2017, https://doi.org/10.1111/jph.12592
  3. Biocontrol of Late Blight Disease (Phytophthora capsici) of Pepper and the Plant Growth Promotion byPaenibacillus ehimensisKWN38 vol.162, pp.6, 2014, https://doi.org/10.1111/jph.12198
  4. Antibacterial Compounds-Macrolactin Alters the Soil Bacterial Community and Abundance of the Gene Encoding PKS vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01904
  5. Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111839
  6. Isolation and identification of cultivated bacteria associated with soybeans and their biocontrol activity against Phytophthora sojae vol.63, pp.4, 2018, https://doi.org/10.1007/s10526-018-9873-9