• 제목/요약/키워드: Bacterial Inoculation

검색결과 347건 처리시간 0.02초

세균성마름병에 대한 담배의 저항성검정 방법 (A Screening Method on Resistance of Tobacco Plants to Bacterial Wilt)

  • 이영근
    • 한국연초학회지
    • /
    • 제24권1호
    • /
    • pp.27-31
    • /
    • 2002
  • Three kinds of inoculation methods, capillary, root cutting and dipping were compared for an efficient way to screening the resistant tobacco variety against bacterial wilt, Ralstonia solanacearum. The pricking a capillary tube contained the pathogenic bacterial suspension(10$^{7}$ cfu/$m\ell$) to an axillary bud of each tobacco plant showed different resistance well between varieties. The less period was required in inoculating work and in disease development for the inoculation method used with capillary tube than for two other inoculation methods tested also.

벼흰빛잎마름병에 대한 포장 저항성의 새로운 검정법 (An Improved Method for Screening Rice Cultivars with Field Resistance to Bacterial Leaf Blight)

  • 최재을;이두구;서재환;배성호
    • 한국식물병리학회지
    • /
    • 제1권2호
    • /
    • pp.115-121
    • /
    • 1985
  • 벼 흰빛잎마름병에 대한 새로운 포장 저항성 검정법을 모색하기 위하여 검정 식물체 접종법과 인접 식물체 접종법을 비교 검토하였다. 새로운 검정법인 검정 식물체 접종법에서는 포장 저항성 검정 식물체를 전엽접종한 발병엽으로부터 새로 출엽된 잎에 이차전염된 발병 엽면적율을 측정하였다. 검정 식물체 접종으로 검정된 포장 저항성 정도는 인접 식물체 접종 결과와 높은 상관이 인정되었으나 포장 저항성 정도는 검정 식물체 접종법에서 명확히 구분되었다. 공시한 33품종 중에서는 밀양 42호, 삼강벼, 태백벼, 한강찰벼, 섬진벼, 70 X-46, 중국 45호 등이 강한 포장 저항성을 보였다. 새로운 포장 저항성 검정법은 품종의 질적 저항성 및 포장 저항성을 동시에 검정할 수 있을 뿐만 아니라 다른 검정법에 비하여 노력과 포장 면적이 적게 들기 때문에 유용한 검정법으로 이용될 수 있을 것으로 생각된다.

  • PDF

담배세균성마름병[립고병(立枯病)]에 대한 담배품종의 저항성 검정법 (Screening Procedure of Tobacco Cultivars for Resistant to Bacterial Wilt Caused by Ralstonia solanacearum)

  • 전용호;강여규
    • 한국연초학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tobacco in Korea. No effective single control measure is available at present time. One of the most potential way for controlling the bacterial wilt on tobacco is growing tobacco cultivars resistant to the bacterial wilt. In this study, optimal conditions for screening tobacco cultivars resistant to the bacterial wilt were examined to provide reproducible and efficient methods in growth chamber testing and field experiments for evaluating plant disease resistance. For this, already-known inoculation methods, inoculum densities, and incubation temperature, and plant growth stages at the time of inoculation were compared using tobacco cultivars resistant (Nicotiana tabacum cv, NC95), moderately resistant (N. tabacum cv. SPG70), and susceptible (N. tabacum BY4) to the bacterial disease. It was determined that root-dipping of tobacco seedlings at six true leaf stage into the bacterial suspension with inoculum level of $10^8$ colony-forming units (CFU)/ml for 20 min before transplanting was simple and most efficient in testing for resistance to the bacterial wilt of tobacco caused by R. solanacearum, for which disease incidences and severities were examined at 2 weeks of plant growth after inoculation at $20{\sim}25^{\circ}C$ in a growth chamber. These experimental conditions could discriminate one tobacco cultivar from the others by disease severity better than any other experimental conditions. In field testing, the optimum time for examining the disease occurrence was late June through early July. These results can be applied to establishing a technical manual for the screening of resistant tobacco cultivars against the bacterial wilt caused by R. solanacearum.

Effect of Algal Inoculation on COD and Nitrogen Removal, and Indigenous Bacterial Dynamics in Municipal Wastewater

  • Lee, Jangho;Lee, Jaejin;Shukla, Sudheer Kumar;Park, Joonhong;Lee, Tae Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.900-908
    • /
    • 2016
  • The effects of algal inoculation on chemical oxygen demand (COD) and total nitrogen (TN) removal, and indigenous bacterial dynamics were investigated in municipal wastewater. Experiments were conducted with municipal wastewater inoculated with either Chlorella vulgaris AG10032, Selenastrum gracile UTEX 325, or Scenedesmus quadricauda AG 10308. C. vulgaris and S. gracile as fast growing algae in municipal wastewater, performed high COD and TN removal in contrast to Sc. quadricauda. The indigenous bacterial dynamics revealed by 16S rRNA gene amplification showed different bacterial shifts in response to different algal inoculations. The dominant bacterial genera of either algal case were characterized as heterotrophic nitrifying bacteria. Our results suggest that selection of indigenous bacteria that symbiotically interact with algal species is important for better performance of wastewater treatment.

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • 농업과학연구
    • /
    • 제44권2호
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Infection Structures on the Infected Leaves of Potato Pre-inoculated with Bacterial Strains and DL-3-amino Butyric Acid after Challenge Inoculation with Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • 제23권3호
    • /
    • pp.203-209
    • /
    • 2007
  • Infection structures were observed using a fluorescence microscope at the penetration sites on the leaves of potato plants pre-inoculated with the bacterial strains Pseudomonas putida TRL2-3, Micrococcus luteus TRK2-2, and Flexibacteraceae bacterium MRL412, which mediated an induced systemic resistance on potato plants against late blight disease caused by Phytophthora infestans. In order to compare the infection structures on the leaves expressing systemic acquired resistance, the leaves of potato plants pre-treated with DL-3-amino butyric acid (BABA) were also observed after challenge inoculation with the same pathogen. The infection structures were investigated. The total number of germination and appressorium formation of P. infestans were counted. Furthermore, the frequencies of fluorescent epidermal cells at the penetration sites, which indicate a defense response of plant cell, were estimated. There were no differences on the germination rates of the fungal cysts among the untreated control, BABA pre-treated, and bacterial strains pre-inoculated plants. However, appressorium formation was slightly decreased on the leaves of BABA pre-treated plants compared to those of untreated as well as bacterial strains pre-inoculated plants. Furthermore, the frequencies of fluorescent cells of BABA pre-treated and bacterial strains pre-inoculated were higher than that of untreated plants, indicating an active defense reaction of the host cells against the fungal attack. On the other hand, the pre-treatment with BABA caused a stronger fluorescent of epidermal cells at the penetration sites compared to the pre-inoculation with the bacterial strains. Interestingly, the frequency of fluorescent cells by BABA, however, was lower than that by the bacterial strains. Based on the results it is suggested that the infection structures showing resistance reaction on the leaves of potato plants were different between by pre-inoculation with bacterial strains and by pre-treatment with BABA against the late blight pathogen.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제46권2호
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Performance of MPS Bacterial Inoculation in Two Consecutive Growth of Maize Plants

  • Park, Myung-Su;Gadagi, Ravi;Singvilay, Olayvanh;Kim, Chung-Woo;Chung, Hee-Kyung;Ahn, Ki-Sup;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제20권5호
    • /
    • pp.335-339
    • /
    • 2001
  • Two successive in vitro experiments were carried out to examine the effect of MPS bacterial inoculation on growth, and nitrogen and phosphorus accumulation of maize plants under greenhouse condition in the same soil. There were four treatments, uninoculated control and three phosphate solubilizing bacterial inoculations, viz., Pseudomonas striata, Burkholderia cepacia and Serratia marcescens. The inoculated plants showed the higher plant height, total dry mass, nitrogen and phosphorus accumulation when compared to uninoculated control plants in both experiments. In the combined data analysis from two experiments, the plants inoculated with P. striata and B. cepacia showed significantly higher plant height, total dry mass and P accumulation when compared to S. marcescens inoculated plant and uninoculated control plants. The P. striata and B. cepacia inoculation enhanced total dry matter accumulation by 14% and phosphorus accumulation by 25% over the uninoculated control plants. The nitrogen and phosphorus concentration of maize plants were also increased due to MPS bacterial inoculation, however, the effect was not significant.

  • PDF

세균성자궁질환(細菌性子宮疾患)에 있어서 Estrogen 이 미치는 영향(影響)에 관한 연구 (Effects of Estrogen on the Bacterial Uterine Diseases)

  • 오수각;옥종화
    • 대한수의학회지
    • /
    • 제12권1호
    • /
    • pp.133-139
    • /
    • 1972
  • Estrous and non-estrous rabbits were inoculated with E. coli or Streptococcus pyogenes, and the mixture of the two organisms, and bacterial count and histopathological studies of uterine horns were made to observe the effects of estrogen on the resistance of the uterus to bacterial infection. The results obtained were summarized as followings; 1. Four hours after inoculation of bactoria into uterine horn, the number of organisms was significantly lower in estrous rabbits than in non-estrous regardless of the kind of organisms inoculated. 2. The highest reduction rate of the organisms among the three bacterial inoculation groups was found in estrous rabbits inoculated with E. coli, and the lowest reduction rate was with Streptococcus pyogenes. 3. Histopathological changes of uterine horns induced five days after bacterial inoculation were observed. In estrous rabbits, a mild inflammatory reaction was found in Streptococcus pyogenes group, but a slight inflammatory reaction and only a negligible inflammatory reaction were observed in mixed bacteria group, and in E. coli group respectively. In non-estrous group, however, a marked inflammatory reaction was observed in Streptococcus pyogenes group, a moderate inflammatory reaction and a slight inflammatory reaction were observed in the mixed bacterial group and E. coli group, respectively.

  • PDF

Observations of Infection Structures after Inoculation with Colletotrichum orbiculare on the Leaves of Cucumber Plants Pre-inoculated with Two Bacterial Strains Pseudomonas putida or Micrococcus luteus

  • Jeun, Yong-Chull;Lee, Kyung-Hoo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.131-136
    • /
    • 2005
  • Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with $1.0{\times}10^7\;cfu/ml$. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with $1.0{\times}10^6\;cfu/ml$ of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.