• Title/Summary/Keyword: Bacterial Foraging Optimization Algorithm

Search Result 16, Processing Time 0.028 seconds

Analysis and Improvement of the Bacterial Foraging Optimization Algorithm

  • Li, Jun;Dang, Jianwu;Bu, Feng;Wang, Jiansheng
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The Bacterial Foraging Optimization Algorithm is a swarm intelligence optimization algorithm. This paper first analyzes the chemotaxis, as well as elimination and dispersal operation, based on the basic Bacterial Foraging Optimization Algorithm. The elimination and dispersal operation makes a bacterium which has found or nearly found an optimal position escape away from that position, which greatly affects the convergence speed of the algorithm. In order to avoid this escape, the sphere of action of the elimination and dispersal operation can be altered in accordance with the generations of evolution. Secondly, we put forward an algorithm of an adaptive adjustment of step length we called improved bacterial foraging optimization (IBFO) after making a detailed analysis of the impacts of the step length on the efficiency and accuracy of the algorithm, based on chemotaxis operation. The classic test functions show that the convergence speed and accuracy of the IBFO algorithm is much better than the original algorithm.

A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

  • Kim Dong-Hwa;Cho Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.624-636
    • /
    • 2006
  • This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. Simulation results are very encouraging and this approach provides us a novel hybrid model based on foraging behavior with a possible new connection between evolutionary forces in social foraging and distributed non-gradient optimization algorithm design for global optimization over noisy surfaces.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Quantum Bacterial Foraging Optimization for Cognitive Radio Spectrum Allocation

  • Li, Fei;Wu, Jiulong;Ge, Wenxue;Ji, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.564-582
    • /
    • 2015
  • This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

A Hybrid Bacterial Foraging Optimization Algorithm and a Radial Basic Function Network for Image Classification

  • Amghar, Yasmina Teldja;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.215-235
    • /
    • 2017
  • Foraging is a biological process, where a bacterium moves to search for nutriments, and avoids harmful substances. This paper proposes a hybrid approach integrating the bacterial foraging optimization algorithm (BFOA) in a radial basis function neural network, applied to image classification, in order to improve the classification rate and the objective function value. At the beginning, the proposed approach is presented and described. Then its performance is studied with an accent on the variation of the number of bacteria in the population, the number of reproduction steps, the number of elimination-dispersal steps and the number of chemotactic steps of bacteria. By using various values of BFOA parameters, and after different tests, it is found that the proposed hybrid approach is very robust and efficient for several-image classification.

Parameter Optimization of Extreme Learning Machine Using Bacterial Foraging Algorithm (Bacterial Foraging Algorithm을 이용한 Extreme Learning Machine의 파라미터 최적화)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.807-812
    • /
    • 2007
  • Recently, Extreme learning machine(ELM), a novel learning algorithm which is much faster than conventional gradient-based learning algorithm, was proposed for single-hidden-layer feedforward neural networks. The initial input weights and hidden biases of ELM are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose(MP) generalized inverse. But it has the difficulties to choose initial input weights and hidden biases. In this paper, an advanced method using the bacterial foraging algorithm to adjust the input weights and hidden biases is proposed. Experiment at results show that this method can achieve better performance for problems having higher dimension than others.

Harmonic Elimination and Optimization of Stepped Voltage of Multilevel Inverter by Bacterial Foraging Algorithm

  • Salehi, Reza;Vahidi, Behrooz;Farokhnia, Naeem;Abedi, Mehrdad
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.545-551
    • /
    • 2010
  • A new family of DC to AC converters, referred to as multilevel inverter, has received much attention from industries and researchers for its high power and voltage applications. One of the conventional techniques for implementing the switching algorithm in these inverters is optimized harmonic stepped waveform (OHSW). However, the major problem in using this technique is eliminating low order harmonics by solving the nonlinear and complex equations. In this paper, a new approach called the "bacterial foraging algorithm" (BFA) is employed. This algorithm eliminates and optimizes the harmonics in a multilevel inverter. This method has higher speed, precision, and convergence power compared with the genetic algorithm (GA), a famous evolutionary algorithm. The proposed technique can be expanded in any number of levels. The purpose of optimization is to remove some low order harmonics, as well as to ensure the fundamental harmonic retained at the desired value. As a case study, a 13-level inverter is chosen. The comparison results by MATLAB software between the two optimization methods (BFA and GA) have shown the effectiveness and superiority of BFA over GA where convergence is desired to achieve global optimum.

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.