• Title/Summary/Keyword: Bacterial DNA

Search Result 1,098, Processing Time 0.029 seconds

PCR-Based Assay for Rapid and Specific Detection of the New Xanthomonas oryzae pv. oryzae K3a Race Using an AFLP-Derived Marker

  • Song, Eun-Sung;Kim, Song-Yi;Noh, Tae-Hwan;Cho, Heejung;Chae, Soo-Cheon;Lee, Byoung-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.732-739
    • /
    • 2014
  • We describe the development of a polymerase chain reaction method for the rapid, precise, and specific detection of the Xanthomonas oryzae pv. oryzae (Xoo) K3a race, the bacterial blight pathogen of rice. The specific primer set was designed to amplify a genomic locus derived from an amplified fragment length polymorphism specific for the K3a race. The 1,024 bp amplicon was generated from the DNA of 13 isolates of Xoo K3a races out of 119 isolates of other races, pathovars, and Xanthomonas species. The assay does not require isolated bacterial cells or DNA extraction. Moreover, the pathogen was quickly detected in rice leaf 2 days after inoculation with bacteria and at a distance of 8 cm from the rice leaf 5 days later. The results suggest that this PCR-based assay will be a useful and powerful tool for the detection and identification of the Xoo K3a race in rice plants as well as for early diagnosis of infection in paddy fields.

Isolation, Identification and Biological Control Activity of SKU-78 Strain against Ralstonia solanacearum (풋마름병균, Ralstonia solanacearum의 길항세균 SKU-78 균주의 분리 동정 및 특성)

  • Sung, Pil-Je;Shin, Jeong-Kun;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • Six stains of plant growth promoting rhizobacteria were selected through germinating seed assay and root colonization assay. Among them, SKU-78 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 60% reduction of bacterial wilt disease compared with the control. It was suggested that SKU-78 strain activated the host defense systems in plants, based on lack of direct antibiosis against pathogen. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, SKU-78 stain was identified as Bacillus sp. SKU-78.

A Membrane-Array Method to Detect Specific Human Intestinal Bacteria in Fecal Samples Using Reverse Transcriptase-PCR and Chemiluminescence

  • KIM PYOUNG IL;ERICKSON BRUCE D;CERNIGLIA CARL E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.310-320
    • /
    • 2005
  • A membrane-based oligonucleotide array was used to detect predominant bacterial species in human fecal samples. Digoxygenin-labeled 16S rDNA probes were generated by PCR from DNA that had been extracted from fecal samples or slurries. These probes were hybridized to an array of 120 oligonucleotides with sequences specific for 40 different bacterial species commonly found in human feces, followed by color development using an alkaline phosphatase-conjugated antibody and NBT /BCIP. Twenty of the species were detected by this method, but E. coli, which was present at $\~$1 $\times 10$^5$ CFU per gram feces, was not detected. To improve the sensitivity of this assay, reverse transcriptase-PCR was used to generate probes from RNA extracted from fecal cultures. Coupled with a chemiluminescence detection method, this approach lowered the detection limit for E. coli from $\~1$ $\times 10$^6$ to ${\leq}$ 1 $\times 10$^5$ These results indicate that the membrane-array method with reverse transcriptase-PCR and chemiluminescence detection can simultaneously identify bacterial species present in fecal samples at cell concentrations as low as${\leq}$ 1 $\times 10$^5$ CFU per gram.

Comparative Analysis of the Difference in the Midgut Microbiota between the Laboratory Reared and the Field-caught Populations of Spodoptera litura

  • Pandey, Neeti;Rajagopal, Raman
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.423-433
    • /
    • 2019
  • Midgut microbiota is known to play a fundamental role in the biology and physiology of the agricultural pest, Spodoptera litura. This study reports the difference in the larval midgut microbiota of field-caught and laboratory-reared populations of S. litura by performing 16S rDNA amplicon pyrosequencing. Field populations for the study were collected from castor crops, whereas laboratory-reared larvae were fed on a regular chickpea based diet. In total, 23 bacterial phylotypes were observed from both laboratory-reared and field-caught caterpillars. Fisher's exact test with Storey's FDR multiple test correction demonstrated that bacterial genus, Clostridium was significantly abundant (p < 0.05) in field-caught larvae of S. litura as compared to that in the laboratory-reared larvae. Similarly, bacterial genera, such as Bradyrhizobium, Burkholderia, and Fibrisoma were identified (p < 0.05) predominantly in the laboratory-reared population. The Bray-Curtis dissimilarity matrix depicted a value of 0.986, which exhibited the maximum deviation between the midgut microbiota of the laboratory-reared and field-caught populations. No significant yeast diversity was seen in the laboratory-reared caterpillars. However, two yeast strains, namely Candida rugosa and Cyberlindnera fabianii were identified by PCR amplification and molecular cloning of the internal transcribed space region in the field-caught caterpillars. These results emphasize the differential colonization of gut residents based on environmental factors and diet.

Comparative Analysis of T4SS Molecular Architectures

  • Mishghan Zehra;Jiwon Heo;Jeong Min Chung;Clarissa L Durie
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1543-1551
    • /
    • 2023
  • The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

Practical considerations for the study of the oral microbiome

  • Yu, Yeuni;Lee, Seo-young;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.77-83
    • /
    • 2020
  • In the oral cavity, complex microbial community is shaped by various host and environmental factors. Extensive literature describing the oral microbiome in the context of oral health and disease is available. Advances in DNA sequencing technologies and data analysis have drastically improved the analysis of the oral microbiome. For microbiome study, bacterial 16S ribosomal RNA gene amplification and sequencing is often employed owing to the cost-effective and fast nature of the method. In this review, practical considerations for performing a microbiome study, including experimental design, molecular analysis technology, and general data analysis, will be discussed.

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Microarray Analysis of the Gene Expression Profiles of SL2 Cells Stimulated by LPS/PGN and Curdlan

  • Jin, Li Hua;Choi, Jung Kyoon;Cho, Hwan Sung;Shim, Jaewon;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.553-558
    • /
    • 2008
  • Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. In order to identify new Drosophila melanogaster genes involved in the immune response, we performed gene expression profiling of Drosophila SL2 cells stimulated with bacterial (LPS/PGN) or fungal (curdlan) components using a cDNA microarray that contained 5,405 Drosophila cDNAs. We found that some genes were similarly regulated by LPS/PGN and curdlan. However, a large number, belonging to the functional classes of cell organization, development, signal transduction, morphogenesis, cell cycle, and DNA replication, displayed significant differences in their transcription profiles between the two treatments, demonstrating that bacterial and fungal components induce different immune response even in an in vitro cell system.

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.