Microarray Analysis of the Gene Expression Profiles of SL2 Cells Stimulated by LPS/PGN and Curdlan

  • Jin, Li Hua (Department of Biochemistry, Yonsei University) ;
  • Choi, Jung Kyoon (Department of Biochemistry, Yonsei University) ;
  • Cho, Hwan Sung (Department of Biochemistry, Yonsei University) ;
  • Shim, Jaewon (Department of Biochemistry, Yonsei University) ;
  • Kim, Young-Joon (Department of Biochemistry, Yonsei University)
  • Received : 2007.11.02
  • Accepted : 2007.12.13
  • Published : 2008.06.30

Abstract

Essential aspects of the innate immune response to microbial infection appear to be conserved between insects and mammals. In order to identify new Drosophila melanogaster genes involved in the immune response, we performed gene expression profiling of Drosophila SL2 cells stimulated with bacterial (LPS/PGN) or fungal (curdlan) components using a cDNA microarray that contained 5,405 Drosophila cDNAs. We found that some genes were similarly regulated by LPS/PGN and curdlan. However, a large number, belonging to the functional classes of cell organization, development, signal transduction, morphogenesis, cell cycle, and DNA replication, displayed significant differences in their transcription profiles between the two treatments, demonstrating that bacterial and fungal components induce different immune response even in an in vitro cell system.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Aderem, A., and Ulevitch, R.J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787 https://doi.org/10.1038/35021228
  2. Borregaar, N., Elsbach, P., Ganz, T., Garred, P., and Svejgaard, A. (2000). Innate immunity: from plants to humans. Immunol. Today 21, 68-70 https://doi.org/10.1016/S0167-5699(99)01570-4
  3. Bowtell, D.D.L. (1999). Options available-from start to finish-for obtaining expression data by microarray. Nat. Genet. 21, 25-32 https://doi.org/10.1038/4455
  4. Dennis, G.Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 https://doi.org/10.1186/gb-2003-4-5-p3
  5. Glovsky, M.M., Cortes-Haendchen, L., Ghekiere, L., Alenty, A., Williams, D.L., and Di Luzio, R. (1983). Effects of particulate beta-1,3 glucan on human, rat, and guinea pig complement activity. J. Reticuloendothel. Soc. 33, 401-413
  6. Hoffmann, J.A., and Reichhart, J.M. (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121-126 https://doi.org/10.1038/ni0202-121
  7. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., and Ezekowitz, R.A. (1999). Phylogenetic perspectives in innate immunity. Science 284, 1313-1318 https://doi.org/10.1126/science.284.5418.1313
  8. Kim, S.N., Rhee, J.H., Song, Y.H., Park, D.Y., Hwang, M., Lee, S.L., Kim, J.E., Gim, B.S., Yoon, J.H., Kim, Y.J., et al. (2005a). Age-dependent changes of gene expression in the Drosophila head. Neurobiol. Aging 26, 1083-1091 https://doi.org/10.1016/j.neurobiolaging.2004.06.017
  9. Kim, T., Yoon, J., Cho, H., Lee, W.B., Kim, J., Song, Y.H., Kim, S.N., Yoon, J.H., Kim-Ha, J., and Kim, Y.J. (2005b). Down-regulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-kappaB signaling modules. Nat. Immunol. 6, 211-218 https://doi.org/10.1038/ni1159
  10. Medzhitov, R., and Janeway, C.A. Jr. (1997). Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
  11. Mokuni, Y., Matsuguchi, T., Takano, M., Nishimura, H., Washizu, J., Ogawa, T., Takeuchi, O., Akira, S., Nimura, Y., and Yoshikai, Y. (2000). Expression of toll-like receptor 2 on ${\gamma}{\delta}$T cells bearing invariant V${\gamma}$6/V${\delta}$1 induced by Escherichia coli infection in mice. J. Immunol. 165, 931-940 https://doi.org/10.4049/jimmunol.165.2.931
  12. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470 https://doi.org/10.1126/science.270.5235.467
  13. Seki, N., Muta, T., Oda, T., Iwaki, D., Kuma, K., Miyata, T., and Iwanaga, S. (1994). Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J. Biol. Chem. 269, 1370-1374
  14. Shin, H.J., Lee, H., Park, J.D., Hyun, H.C., Sohn, H.O., Lee, D.W., and Kim, Y.S. (2007). Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins. Mol. Cells 24, 119-124
  15. Weinstein, S.L., Gold, M.R., and DeFranco, A.L. (1991). Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc. Natl. Acad. Sci. USA 88, 4148-4152