• Title/Summary/Keyword: Bacteria in the intestines

Search Result 58, Processing Time 0.036 seconds

A Study on the Generative Reason of the Toxicity for the Pufferfish (복어가 지니는 독성의 생성원인에 관한 연구)

  • JANG, Hu-Chun;PARK, Jong-Un;KIM, Jong-Hwa
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.1
    • /
    • pp.67-80
    • /
    • 2003
  • This study was carried out to study the reason responsible for the generation of the toxicity in pufferfish. It is well known that the wild pufferfish has the toxicity, but much less in cultured stock. Several previous studies asserted that the pufferfish would make the toxicity of itself, while others have claimed that the toxicity should be made by the bacteria in their intestines. We made an comparative study on the toxicity in pufferfish. Also, the toxicity was compared the pufferfish with the culture pufferfish under the same condition. Based on the present data, the toxicity was possibly caused by the feed that pufferfish intake.

Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application

  • Lee, Han-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1645-1653
    • /
    • 2013
  • Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are being isolated and identified from high salt-fermented foods consumed by humans, and it has been found that various types of halophilic archaea exist in food products by culture-independent molecular biological methods. In addition, even if the numbers are not quite high, DNAs of various halophilic archaea are being detected in human intestines and much interest is given to their possible roles. This review aims to summarize the types and characteristics of halophilic archaea reported to be present in foods and human intestines and to discuss their application as well.

Isolation of Bacteriocin-producing Lactic Acid Bacteria from Human Intestines and the Characteristics of their Bacteriocins (Bacteriocin을 생산하는 장내 유산균의 분리 및 Bacteriocin 특성조사)

  • 김정환;맹길재;김정상;지근억
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1228-1236
    • /
    • 1997
  • Lactobacillus strains were isolated from volunteer's feces, including from newly-born infants and adults in their 20's, by using differential MRS-BPB plates. Total 56 presumptive Lactobacillus strains were isolated and the bacteriocin productions by the isolates were examined by agar diffusion method. Six bacteriocin-producing strains were confirmed. Among them, two isolates, HU-1 and H22-3, showed the most outstanding antimicrobial activities, which were not affected by pH adjustments or catalase treatments of culture. HU-1 was originated from a two-years old boy and H22-3 was originated from a newly-born infant. HU-1 and H22-3 had the same morphology(short rod) when examined by scanning electron microscope, and the same biochemical traits including growth temperature range, salt tolerance and sugar-fermenting abilities. But the growth-inhibition spectrum and plasmid profiles of HU-1 and H22-3 were different. Both strains inhibited the growth of various Gram (+) microorganisms including Listeria monocytogenes. Micrococcus luteus, and Staphylococcus aureus in addition to many species of lactic acid bacteria, indicating the production of broad-spectrum bacteriocins. Bacteriocins produced by HU-1 and H22-3 were stable up to 90℃, 15 min heat treatments. Their activities were not affected by pepsin or trypsin treatments but destroyed by proteinaseK or pronase treatments.

  • PDF

Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota

  • Choi, Hye Ran;Chung, Yi Hyung;Yuk, Hyun-Gyun;Lee, Hyunki;Jang, Han Su;Kim, Yosum;Shin, Daekeun
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1747-1754
    • /
    • 2018
  • The objective of this study was to evaluate probiotic effects of two Lactobacillus plantarum strains (GBL16 and 17) isolated from black raspberry. Results revealed that the number of GBL16 was gradually decreased as bile salt concentration was increased from 0.3 to 1%. However, GBL17 did not show any difference when GBL17 was applied to 1% bile salt, and it indicates that GBL17 is more tolerant to bile salt than GBL16. GBL17 exhibited higher heat resistance and adhesion ability to Caco-2 cells than GBL16. Regarding gut microbiome, no significant change in the number of total bacteria in intestines of mice after treatment with GBLs was determined. However, the combination of GBL16 and GBL17 significantly increased the number of total bacteria in intestines of mice after they were orally administered. Therefore, the results suggest that both GBL16 and 17 strains could be one of major probiotics that can improve human gut health.

Bacterial Population in Intestines of Litopenaeus vannamei Fed Different Probiotics or Probiotic SupernatantS

  • Sha, Yujie;Liu, Mei;Wang, Baojie;Jiang, Keyong;Qi, Cancan;Wang, Lei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1736-1745
    • /
    • 2016
  • The interactions of microbiota in the gut play an important role in promoting or maintaining the health of hosts. In this study, in order to investigate and compare the effects of dietary supplementation with Lactobacillus pentosus HC-2 (HC-2), Enterococcus faecium NRW-2, or the bacteria-free supernatant of a HC-2 culture on the bacterial composition of Litopenaeus vannamei, Illumina sequencing of the V1-V2 region of the 16S rRNA gene was used. The results showed that unique species exclusively existed in specific dietary groups, and the abundance of Actinobacteria was significantly increased in the intestinal bacterial community of shrimp fed with the bacteria-free supernatant of an HC-2 culture compared with the control. In addition, the histology of intestines of the shrimp from the four dietary groups was also described, but no obvious improvements in the intestinal histology were observed. The findings in this work will help to promote the understanding of the roles of intestinal bacteria in shrimps when fed with probiotics or probiotic supernatant.

The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy

  • Kim, Jaeho;Lee, Heung Kyu
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.356-362
    • /
    • 2021
  • An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.

Antimicrobial Resistance Patterns of Vancomycin-Resistant Streptococcus equinus Isolated from Animal Foods and Epidemiological Typing of Resistant S. equinus by Microbial Uniprimer Kit

  • Choi, Sung-Sook;Lee, Jin-Woo;Kang, Byoung-Yong;Ha, Nam-Joo
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.638-643
    • /
    • 2003
  • Raw milk samples, and cow and chicken intestines were tested to isolate vancomycin-resistant, gram-positive bacteria. From these samples, we isolated seven vancomycin-resistant Streptococcus equinus, two vancomycin-resistant viridans Streptococcus and two vancomycin-resistant Enterococcus faecium. The MICs of several antibiotics, including vancomycin, against these strains were tested. Seven isolates of S. equinus showed high level resistance to vancomycin and teicoplanin (>100 $\mu$ g/mL). The cell wall thickness of these strains was compared with that of the sensitive strain by TEM and no differences were obserbed between these strains. We compared the strains of vancomycin-resistant Streptococcus equinus using PCR with Microbial Uniprimer Kit. We concluded that it is necessary to combine other methods in order to cluster and identify all isolates of S. equinus.

Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli

  • Oh, S.Y.;Yun, W.;Lee, J.H.;Lee, C.H.;Kwak, W.K.;Cho, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2017
  • Background: Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method: This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result: Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion: In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.

Investigation of Microbial Communities in Sulculus diversicolor supertexta Through 16S rRNA Sequencing and Antibacterial Monitoring of Harmful Strains (16S rRNA 염기서열 분석을 통한 오분자기(Sulculus diversicolor supertexta)내 미생물 군집 조사 및 인체유해 질병세균에 대한 항균활성 모니터링)

  • Kim, Min-Seon;Lee, Seung-Jong;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1477-1488
    • /
    • 2018
  • This study investigated the muscles, intestines, and gonads of Sulculus diversicolor supertexta to examine the diversity of microbial communities within examples collected from the Jeju Coast. Using different media, initial pure isolation in MA, 1% BHIA, and 1% TSA indicated that the muscles, intestines, and gonads supported more communities, respectively. In analysis of relative similarity with 16s rRNA sequencing, 190 pure colonies were isolated, and further analysis with NBLAST identified 71 species, 39 genera, 25 families, and five phyla. Homogeny with the reference strain was 91-100%. Microbial communities in S. supertexta consisted of gamma and alpha Proteobacteria (48%), Actinobacteria (32.5%), Firmicutes (16.9%), Deinococcus-Thermus (1.3%), and Bacteroides (1.3%). In all tissue, Psychrobacter cibarius in Moraxellaceae was dominant. Alteromonadaceae, Enterobacteriaceae, Pasturellaceae, Moraxellaceae, Rhodobacteraceae, Geminicoccaceae, Dietziaceae, Intrasporangiaceae, Microbacteriaceae, Micrococcaceae, Micromonosporaceae, Streptomycetaceae, Aerococcaceae, Bacillaceae, Paenibacillaceae, Planococcaceae, and Staphylcoccaceae were commonly isolated across all tissues, and Flavobacteriaceae, Corynebacteriaceae, Yesiniaceae, Vibrionaceae, Hahellaceae, Pseudomonadaceae were also identified from the intestines. In microbial monitoring of four harmful bacteria, Streptomyces albus (96%) showed antibacterial activity against all four strains, and Agrococcus baldri (99%) and Psychrobacter nivimaris (99%) presented against E. Coli and E. aerogens. In addition, some strains with low homogeny were isolated and further experiments are therefore required, for example to refine the antimicrobial substances including new strain investigations. These additional experiments would aim to establish generic resources for the microbial communities in S. Supertexta and provide basic data for applied microbiological research.

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.