• Title/Summary/Keyword: Bacteria fungi

검색결과 1,071건 처리시간 0.033초

Indirect Bacterial Effect Enhanced Less Recovery of Neonicotinoids by Improved Activities of White-Rot Fungus Phlebia brevispora

  • Harry-Asobara, Joy L.;Kamei, Ichiro
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.809-812
    • /
    • 2019
  • Bacterial strains that improve mycelial morphology and growth of white-rot fungi in liquid medium could enhance the impact of white-rot fungi towards lesser recovery of neonicotinoids when cocultured. This was demonstrated by the recovery of clothianidin and acetamiprid from cocultures of the white-rot fungus Phlebia brevispora strains with two mycelial-growth-promoting bacteria, Enterobacter sp. TN3W-14 and Pseudomonas sp. TN3W-8. Clothianidin recovery from cocultures of white-rot fungi and bacteria was over 40% lower than that from axenic microbial cultures and mixed-bacterial cultures. About 20% less acetamiprid was equally recovered from both TMIC33929+TN3W-14 cocultures and mixed-bacterial cultures than from axenic fungal and bacterial cultures.

다중이용시설내 공기중 바이오에어로졸 농도분포 특성에 관한 연구 (Characterization of Airborne Bioaerosol Concentration in Public Facilities)

  • 이철민;김윤신;이태형;박원석;홍승철
    • 한국환경과학회지
    • /
    • 제13권3호
    • /
    • pp.215-222
    • /
    • 2004
  • This study was conducted to evaluate the characterization of airborne bioaerosol in public facilities in Seoul. A total of 17 public facilities were investigated from December, 2002 to February, 2003. As results of the survey, the mean concentrations of bacteria and fungi in indoor air of public facilities were $378.08\pm296.33$ CFU/㎥ by RCS and $106.38\pm171.63$ CFU/㎥ and $347.46\pm335.32$ CFU/㎥ and $95.23\pm62.61$ CFU/㎥, by Six-stage cascade air sampler respectively. The mean concentrations of bacteria in indoor air (by ventilation method) were $517.14\pm343.93$ CFU/㎥ of natural ventilation and $215,83\pm100.71$ CFU/㎥ of mechanical ventilation. The mean concentrations of fungi in indoor air (by ventilation method) were $83.14\pm79.16$ CFU/㎥ of natural ventilation and $133.50\pm248.07$ CFU/㎥ of mechanical ventilation. The mean concentrations of bacteria in indoor air were 449.44 CFU/㎥ for the ground and $217.50\pm103.68$ CFU/㎥ for the underground. The mean concentrations of fungi in indoor air were $63.89\pm77.66$ CFU/㎥ for the ground and $202.00\pm290.08$ CFU/㎥ for the underground.

사료제조공장 내 공기 중 세균과 진균 분포에 관한 연구 (Distribution of airborne microorganism in the feedstuff manufacture factory)

  • 김기연;정연일;김치년;원종욱;노재훈
    • 한국산업보건학회지
    • /
    • 제17권4호
    • /
    • pp.335-342
    • /
    • 2007
  • The objective of the study is to investigate the distribution patterns of airborne bacteria and fungi in the feedstuff manufacture factory. The mean levels of airborne bacteria and fungi in the feedstuff manufacture factory were $113({\pm}18)cfu/m^3$ and $89({\pm}5)cfu/m^3$ for pelleting process and $198({\pm}5)cfu/m^3$ and $124({\pm}12)cfu/m^3$ for powdering process, respectively. The percentage of respirable and total concentration of airborne bacteria and fungi in the feedstuff manufacture factory ranged from 60% to 90% and were higher in pelleting process than powdering process. The ratio of indoor and outdoor airborne microorganism exceeded 1.0 regardless of types of feedstuff manufacture process. Based on the result of the study, there would be an association between environmental factors such as relative humidity and carbon dioxide and airborne microorganism's bioactivity.

Assessment of Airborne Microorganisms in a Swine Wastewater Treatment Plant

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Daekeun
    • Environmental Engineering Research
    • /
    • 제17권4호
    • /
    • pp.211-216
    • /
    • 2012
  • Quantification of the airborne microorganisms (bacteria and fungi) at a swine wastewater treatment plant was performed. Microbial samples were collected at three different phases of the treatment process over a 1-yr period. Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria and fungi were performed. The concentrations of airborne bacteria ranged up to about $5{\times}10^3$ colony-forming unit (CFU)/$m^3$, and those of airborne fungi ranged up to about $9{\times}10^2CFU/m^3$. The primary treatment (e.g., screen, grit removal, and primary sedimentation) was found to be the major source of airborne microorganisms at the site studied, and higher levels of airborne bacteria and fungi were observed in summer. High levels of the respirable bioaerosol (0.65 to $4.7{\mu}m$ in size) were detected in the aeration phase. Among the environmental factors studied, temperature was strongly associated with fungal aerosol generation (with a Spearman correlation coefficient of 0.90 and p-value <0.01). Occupational biorisks are discussed based on the observed field data.

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Jeong, Jeong-Seok;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.81-86
    • /
    • 2015
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).

휴게음식점 주방의 환경위생상태에 관한 조사연구 - 계절별 변화를 중심으로 - (A Study on the Sanitary Condition of Kitchens in Food Court/Cafeterias - An Observation on Seasonal Variations)

  • 김종규;박정영;김중순
    • 한국환경보건학회지
    • /
    • 제38권2호
    • /
    • pp.118-127
    • /
    • 2012
  • Objectives: This study was undertaken to assess the sanitary conditions in the kitchens of food court/cafeterias and determine seasonal variations. Methods: We measured environmental factors (air temperature, relative humidity, illumination intensity, noise level), and dropping airborne microbes (bacteria and fungi) in the kitchens of eight food court/cafeterias in four seasons (January, April, July, and October). Air temperature and relative humidity were measured with in/out thermo-hygrometers at 1.2-1.5 m above floor level. Illuminance measurement was performed through the multiple point method of Korean Standards (KS). Noise level was measured by the standard methods for the examination of environmental pollution (noise and vibration) of Korea. The estimation of dropping airborne bacteria and fungi was performed through use of Koch's method. Results: The highest kitchen air temperature was in July, and the lowest in January. The average temperature surpassed $21^{\circ}C$ throughout the seasons, suggesting a higher temperature than required for the safe handling of food. Humidity in all the kitchens was measured in the range of 50-60%. Half of the kitchens showed illumination intensities below 300 Lux in April. It was found that the sound pressure level of noise in almost all of the kitchens was higher than 85 dB (A). The highest levels of dropping airborne bacteria and fungi were noted in July. The numbers of airborne bacteria were higher than those of fungi. The levels of dropping airborne bacteria and fungi were affected by air temperature, relative humidity, season, and place. Conclusions: This study indicates that the kitchen environments were unqualified to supply safe food. The hygiene level of the kitchens should be improved.

Spore Associated Bacteria (SAB) of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR) Increase Nutrient Uptake and Plant Growth Under Stress Conditions

  • Gopal, Selvakumar;Chandrasekaran, Murugesan;Shagol, Charlotte;Kim, Ki-Yoon;Sa, Tong-Min
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.582-592
    • /
    • 2012
  • Microorganisms present in the rhizosphere soil plays a vital role in improving the plant growth and soil fertility. Many kinds of fertilizers including chemical and organic has been approached to improve the productivity. Though some of them showed significant improvement in yield, they failed to maintain the soil properties. Rather they negatively affected soil eventually, the land became unsuitable for agricultural. To overcome these problems, microorganisms have been used as effective alternative. For past few decades, plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) have been used as effective inoculants to enhance the plant growth and productivity. PGPR improves the plant growth and helps the plant to withstand biotic and abiotic stresses. AM fungi are known to colonize roots of plants and they increase the plant nutrient uptake. Spore associated bacteria (SAB) are attached to spore wall or hyphae and known to increase the AMF germination and root colonization but their mechanism of interaction is poorly known. Better understanding the interactions among AMF, SAB and PGPR are necessary to enhance the quality of inoculants as a biofertilizers. In this paper, current knowledge about the interactions between fungi and bacteria are reviewed and discussed about AMF spore associated bacteria.

Assessment of indoor air micro-flora in selected schools

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • 제2권1호
    • /
    • pp.61-80
    • /
    • 2013
  • Quantification of viable forms of microbial community (bacteria and fungi) using culture-dependent methods was done in order to characterize the indoor air quality (IAQ). Role of those factors, which may influence the concentration of viable counts of bacteria and fungi, like ventilation, occupancy, outdoor concentration and environmental parameters (temperature and relative humidity) were also determined. Volumetric-infiltration sampling technique was employed to collect air samples both inside and outside the schools. As regard of measurements of airborne viable culturable microflora of schools during one academic year, the level of TVMCs in school buildings was ranged between 803-5368 cfu/$m^3$. Viable counts of bacteria (VBCs) were constituted 63.7% of the mean total viable microbial counts where as viable counts of fungi (VFCs) formed 36.3% of the total. Mean a total viable microbial count (TVMCs) in three schools was 2491 cfu/$m^3$. Outdoor level of TVMCs was varied from 736-5855 cfu/$m^3$. Maximum and minimum VBCs were 3678-286 cfu/m3 respectively. Culturable fungal counts were ranged from 268-2089 cfu/$m^3$ in three schools. Significant positive correlation (p < 0.01) was indicated that indoor concentration of viable community reliant upon outdoor concentration. Temperature seemed to have a large effect (p < 0.05, p < 0.01) on the concentration of viable culturable microbial community rather than relative humidity. Consistent with the analysis and findings, the concentration of viable cultural counts of bacteria and fungi found indoors, were of several orders of magnitude, depending upon the potential of local, spatial and temporal factors, IO ratio appeared as a crucial indicator to identify the source of microbial contaminants.

Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom

  • Imtiaj, Ahmed;Jayasinghe, Chandana;Lee, Geon-Woo;Lee, Tae-Soo
    • Mycobiology
    • /
    • 제35권4호
    • /
    • pp.210-214
    • /
    • 2007
  • Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied $5{\sim}300\;mg/ml$ concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.

Hygienic effect of modified atmosphere film packaging on ginseng sprout for microbial safety

  • Jangnam Choi;Sosoo Kim;Jiseon Baek;Mijeong Lee;Jihyun Lee;Jayeong Jang;Theresa Lee
    • 한국식품저장유통학회지
    • /
    • 제31권1호
    • /
    • pp.24-32
    • /
    • 2024
  • This study evaluates the microbial safety of ginseng sprouts packaged in moss and a modified atmosphere (MA) film within Styrofoam boxes. Ginseng sprout samples were stored at 4℃ for seven days, and the total fungi and aerobic bacteria counts, relative humidity, and moisture content were measured at 0, 1, 3, 5, and 7 days. During the storage period, both packaging treatments caused an increase in the total fungi and aerobic bacteria counts. However, by the seventh day, the ginseng sprouts packaged in the MA film demonstrated significantly lower counts of total fungi (3.03 log CFU/g) and aerobic bacteria (7.32 log CFU/g) than those in moss (3.66 and 7.63 log CFU/g, respectively). Moss packaging alone resulted in the total fungi count reaching up to 3.36 log CFU/g, with the aerobic bacteria count consistently exceeding 7 log CFU/g, highlighting the importance of hygienic management. Moreover, no significant differences were observed in the moisture content and relative humidity between the MA-film- and moss-packaged groups throughout storage. These findings indicate that the functional MA film is a more hygienic packaging solution for ginseng sprouts than moss.