• Title/Summary/Keyword: Backward gait

Search Result 39, Processing Time 0.026 seconds

Auto-Walking Training After Incomplete Spinal Cord Injury (불완전 척수손상 후의 자동보행훈련)

  • Jeong, Jae-Hoon
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.81-90
    • /
    • 2003
  • This study was conducted to assess the effects of the gait training method in incomplete spinal cord injured persons using an auto-walking machine. Persons with incomplete spinal cord injury level C or D on the American Spinal Injury Association impairment scale participated for eight weeks in an auto-walking training program. The gait training program was carried out for 15 minutes, three times per day for 8 weeks with an auto-walking machine. The foot rests of the auto-walking machine can be moved forward, downward, backward and upward to make the gait pattern with fixed on crank. The patient's body weight is supported by a harness during waking training. We evaluated the gait speed, physiologic cost index, motor score of lower extremities and the WISCI (walking index for spinal cord injury) level before the training and after the forth and eighth week of walking training. 1. The mean gait speed was significantly increased from .22 m/s at pre-training to .28 m/s after 4 weeks of training and .31 m/s after 8 weeks of training (p=.004). 2. The mean physiologic cost index was decreased from 4.6 beats/min at pre-training to 3.0 beats/min after 4 weeks and 2.0 beats/min after 8 weeks of training, but it was not statistically significant (p=.140). 3. The mean motor score of lower extrernities was significantly increased from 29.8 to 35.8 after 8 weeks of training (p=.043). 4. The mean WISCI level was significantly increased from level 10 to level 19 after 8 weeks of training (p=.007). The results of this study suggest that the gait training program using the auto-walking machine increased the gait speed, muscle strength and galt pattern (WISCI level) in persons with incomplete spinal cord injury. A large, controlled study of this technique is warranted.

  • PDF

Dual task interference while walking in chronic stroke survivors

  • Shin, Joon-Ho;Choi, Hyun;Lee, Jung Ah;Eun, Seon-deok;Koo, Dohoon;Kim, JaeHo;Lee, Sol;Cho, KiHun
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.134-139
    • /
    • 2017
  • Objective: Dual-task interference is defined as decrements in performance observed when people attempt to perform two tasks concurrently, such as a verbal task and walking. The purpose of this study was to investigate the changes of gait ability according to the dual task interference in chronic stroke survivors. Design: Cross-sectional study. Methods: Ten chronic stroke survivors (9 male, 1 female; mean age, 55.30 years; mini mental state examination, 19.60; onset duration, 56.90 months) recruited from the local community participated in this study. Gait ability (velocity, paretic side step, and stride time and length) under the single- and dual-task conditions at a self-selected comfortable walking speed was measured using the motion analysis system. In the dual task conditions, subjects performed three types of cognitive tasks (controlled oral word association test, auditory clock test, and counting backwards) while walking on the track. Results: For velocity, step and stride length, there was a significant decrease in the dual-task walking condition compared to the single walking condition (p<0.05). In particular, higher reduction of walking ability was observed when applying the counting backward task. Conclusions: Our results revealed that the addition of cognitive tasks while walking may lead to decrements of gait ability in stroke survivors. In particular, the difficulty level was the highest for the calculating task. We believe that these results provide basic information for improvements in gait ability and may be useful in gait training to prevent falls after a stroke incident.

The Results of Various Vestibular Function Tests in Young Male Adult (장정에 시행한 몇가지 평가기능 검사성적에 대한 고찰)

  • 박찬일;추광철;노관택
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.2.3-2
    • /
    • 1972
  • The vestibular function test reveals the objective findings of the impairment of the vestibular labyrinth. It's purpose is based on the analysis of the findings and detect the location and etiology of the labyrinthine impairment. In the vestibular function test, the vestibulo-spinal reflex has the clinical significance upon the tonus of the striated muscles by the labyrithine stimulation and contribute to regulating the posture and the position, at rest as well as in motion. The vestibulo-spinal reflex must performe as one of the routine vestivular function test because it can be evoked in man by such weak stimuli to the labyrinth as cannot induce vestibulo-ocular reflex. Authors performed the vestibular function test such as one leg test, gait test, stepping test and vertical writing test to one hundred of healthy and young male adult and received the following results. Results 1. One leg test: In 30 seconds, the frequency of dropping the leg on the ground was between 0 to 3 times in Rt., and 0 to 5 times in Lt. The mean frequency was 0.48 times in Rt., and 0.68 times in Lt. 2. Gait test: In forward gait; the range of the deviation was distributed 0 to 100 cm and mean range was 22.5cm to the Rt., 26.1cm to the Lt. In backward gait; the range deviation was distributed 0 to 140cm and mean range was 35.4cm to the Rt., 33.0cm to the Lt. 3. Stepping test: In normal head position; forward movement war 93% and backward 5%. The angle of displacement deviated to the Rt. side in 36%, and Lt. in 50%. The angle of rotation deviated to the Rt. side in 53 %, and Lt. in 36%. The mean values: angle of displacement was 22.05 degrees, angle of rotation was 24.40 degrees, distance of displacement was 48.95cm. In backward head position; Forward movement was 94% and backward was 3%. The angle of displacement deviated in 34%, and Rt. in 55%, to the Rt. side The angle of rotation deviated to the Rt. side in 50%, and Lt. in 42%. The mean values; angle of displacement was 29.72 degrees, angle of rotation was 39.53 degrees, distance of displacement was 44.17cm. 44.17cm. 4. Vertical writing test: The angle of deviation was between 0 to 16 degrees in all cases, and was between 0 to 12 degrees in the cases of normal head position. The mean angle of deviation was between 4.15 to 5.76 degrees on each side. The direction of deviation to the Rt. side was 54~69%, Lt. was 25~40% and 3~7% was vertical without deviation.

  • PDF

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Dynamic Simulation of Modifiable Walking Pattern Generation to Handle Infeasible Navigational Commands for Humanoid Robots

  • Hong, Young-Dae;Lee, Ki-Baek;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.751-758
    • /
    • 2016
  • The modifiable walking pattern generation (MWPG) algorithm can handle dynamic walking commands by changing the walking period, step length, and direction independently. When an infeasible command is given, the algorithm changes the command to a feasible one. After the feasibility of the navigational command is checked, it is translated into the desired center of mass (CM) state. To achieve the desired CM state, a reference CM trajectory is generated using predefined zero moment point (ZMP) functions. Based on the proposed algorithm, various complex walking patterns were generated, including backward and sideways walking. The effectiveness of the patterns was verified in dynamic simulations using the Webots simulator.

Mobile Robot for Indoor Air Quality Monitoring (이동형 실내 공기질 측정 로봇)

  • Lee, So-Hwa;Koh, Dong-Jin;Kim, Na-Bin;Park, Eun-Seo;Jeon, Dong-Ryeol;Bong, Jae Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.537-542
    • /
    • 2022
  • There is a limit to the current indoor air quality (IAQ) monitoring method using fixed sensors and devices. A mobile robot for IAQ monitoring was developed by mounting IAQ monitoring sensors on a small multi-legged robot to minimize vibration and protect the sensors from vibration while robot moves. The developed mobile robot used a simple gait mechanism to enable the robot to move forward, backward, and turns only with the combination of forward and reverse rotation of the two DC motors. Due to the simple gait mechanism, not only IAQ data measurements but also gait motion control were processed using a single Arduino board. Because the mobile robot has small number of electronic components and low power consumption, a relatively low-capacity battery was mounted on the robot to reduce the weight of the battery. The weight of mobile robot is 1.4kg including links, various IAQ sensors, motors, and battery. The gait and turning speed of the mobile robot was measured at 3.75 cm/sec and 14.13 rad/sec. The maximum height where the robot leg could reach was 33 mm, but the mobile robot was able to overcome the bumps up to 24 mm.

Development of a Static Prosthesis-Alignment Device Using a Force Plate and a Laser Light (힘측정판과 레이저 광을 이용한 정적 의족정렬장치의 개발)

  • 이기원;김기완;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • The alignment of the prosthetics is very important in an amputee's gait. In the present study. a static prosthesis-alignment device was developed. It consisted of a force plate with four load cells, a laser beam controlled by a step motor, and a control part programmed by PCBASIC. Using the static prosthesis-alignment device, we measured the distance between the load line and various joints of 24 normal volunteers in three standing postures. such as neutral, forward leaning, and backward leaning. Only neutral postures were evaluated on four trans-tibial amputees. The load line for the normal person's neutral position located anterior to the ankle, the knee, and the greater trochanter, but posterior to the shoulder joint. Forward and backward leaning of the normal person resulted in a significant anterior and posterior movements of the load line, respectively. The load line for the amputated side of the trans-tibial amputee also located anterior to the ankle, the extremity prostheses, providing a good relative locations of the load line with respect to various joints.

  • PDF

A Basic Study of Hexapod Walking Robot (6족 보행로봇에 관한 기초연구)

  • Kang, D.H.;Min, Y.B.;Iida, M.;Umeda, M.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.339-347
    • /
    • 2007
  • A hexapod walking robot had been developed for gathering information in the field. The developed robot was $260{\times}260{\times}130$ ($W{\times}L{\times}H$, mm) in size and 14.7 N in weight. The legs had nineteen degrees of freedom. A leg has three rotational joints actuated by small servomotors. Two servomotors placed at ankle and knee played the roles of vertical joint for up and down motions of the leg and the other one placed at coxa played the role of horizontal joint for forward and backward motions. In addition, a servomotor placed at thorax between the front legs and the middle legs played the role of vertical joint for pumping the two front legs to climb stair or inclination. Walking motion of the robot was executed by tripod gait. The robot was controlled by manual remote-controller communicated by an infrared ray. Two controllers were equipped to control the walking of the robot. The sub-controller using PIC microcomputer (Microchips, PIC16F84A) received the 16 bit command signal from the manual remote controller, decoded it to 8bit and transmitted it to the main microcomputer (RENESAS, SH2/7045), which controlled the 19 servomotors using the PWM command signals. Walking speeds were controlled by adjusting the period of command cycle and the stride. Forward walking speed were within 100 cm/min to 300 cm/min. However, experimental walking speed had the error of 4-40 cm/min to compare with the theoretical one, because of slippage of the leg and the circular arc motion of servomotor of coxa.