• 제목/요약/키워드: Backward facing step flow

검색결과 93건 처리시간 0.028초

모서리진 후향 계단의 유동특성 분석 (Analysis of Flow Characteristics Behind an Edged Backward Facing Step)

  • 한철희
    • 융복합기술연구소 논문집
    • /
    • 제4권1호
    • /
    • pp.33-35
    • /
    • 2014
  • Investigation of flow characteristics behind a edged backward facing step is important for selecting appropriate positions of building constructions in the desert area. In the present study, the effect of edge angles on the flow characteristics is investigated using a commercial software CFD-ACE+. When the edge angle is less than 30 degree, reattachment length decreases, whereas when the edge angle is larger than 30 degrees, reattachment angle increases. It can be concluded that the flow patterns behind an edged backward facing step is classified as the two, streamlined and bluffed bodies. Appropriate edge angles have an effect of increasing the momentum toward the wall, which can reduce the reattachment length. It can be said that present results can be utilized for diverse industrial applications that includes the backward facing step.

후향계단이 있는 사각덕트 내부의 유동특성 연구 (A study of backward-facing step flow in a rectangular duct)

  • 김성준;최병대
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.59-65
    • /
    • 1999
  • This study is to analyze turbulent flow over a backward-facing step in a rectangular duct. The side wall effects on the internal flow were determined by varying the aspect ratio(defined as the step span-to-height ratio) from 1 to 20. In the flow behind a backward-facing step, separation, recirculation and redeveloping is occurred frequently. These phenomena appear in a particular variation by varying the aspect ratio. The results show that the aspect ratio has an influence on the velocity and reattachment length. When the AR is increased, the reattachment length is increased. For 6 over aspect ration, the rate of increase is decreased. The length of recirculation in the upper corner is increased, as the increase of aspect ration. It's width is not changed in the variation of aspect ration. The transverse, streamwise and spanwise velocities were decreased along the flow down stream of the step.

  • PDF

POD를 사용한 3차원 후향계단 유동장 분석 예제 (EXAMPLES OF REDUCED ORDER MODELLING FOR A 3D BACKWARD FACING STEP FLOW USING POD TECHNIQUE)

  • 이광섭;이은석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.40-42
    • /
    • 2010
  • Unsteady CFD results of the backward facing step (BFS) flow field is reconstructed by the low-dimenstional modes using the POD (Proper Orthogonal Decomposition) technique. Flow responses to the blowing or suction with various frequencies and amplitudes applied at the edge of the BFS can also be analysed using the same technique. The present technique can be effectively applied to the feedback flow control device.

  • PDF

고속유동장내 액체분열현상 (Phenomena of Liquid Jet Breakup in High Speed Gas Stream)

  • 박용국;석지권;이충원
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.66-73
    • /
    • 1996
  • The present study investigates experimentally the characteristics of liquid jet, which is, the spray flow in the normal direction of the air stream under the flow conditions of air velocity $110\sim125m/s$. The present study adopts with the flow visualization technique using a short duration light bulb and the image processing analyse with CCD camera. Two types of injector were used: one is a flat plate type, and the other is backward facing step type, which height are 5, 8, 10mm. Dispersion of liquid jet can be represented by gray level of CCD camera. In the upstream of liquid jet, the backward facing step shows better liquid jet penetration. However, in the downstream. mean droplet size for backward facing step injector is smaller than that for flat plate injector

  • PDF

CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구 (A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD)

  • 최영도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.127-132
    • /
    • 1998
  • The present study is aimed to investigate flow characteristics of Two dimensional backward-facing step by numerical approach. A convection conservative difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar, transitional and turbulent flow conditions at which the experimental data can be available for the backward-facing step. The twenty kinds of Reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement, computations are performed on seven different meshes of uniformly increasing refinement. Also to investigate the result of inflow dependence, two kinds of the inflow profile are chosen for the laminar flow. As criterion of benchmarking the result of numerical simulation, reattachment length is used for the selected Reynolds numbers.

  • PDF

후향단유동내 경계층의 재발달에 미치는 경계조건의 영향 (Effects of Boundary Conditions on Redevelopment of the Boundary Layer in a Backward-Facing Step Flow)

  • 김동일;이문주;전중환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.506-511
    • /
    • 2001
  • This paper presents how redevelopment of the boundary layer in a backward-facing step flow is affected by boundary conditions imposed on velocity at the inlet, top and exit of the flow. A two-dimensional, laminar, incompressible flow over a backward-facing step with an open top boundary has been computed by using numerical methods of second-order time and spatial accuracy and a fractional-step method that guarantees a divergence-free velocity field at all time. The inlet velocity profile above the step is of Blasius type. Along the top boundary, shear-tree and Dirichlet conditions on the streamwise velocity were considered and at the exit fully-developed and convective boundary conditions were examined. (The vertical velocity at all boundaries were assumed to be zero explicitly or implicitly.) From the computed flow fields, the reattachment on the bottom side of shear layer separated from the tip of the step and succeeding redevelopment of the boundary layer were investigated.

  • PDF

CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구 (A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.9-18
    • /
    • 1999
  • The present study is aimed to investigate flow characteristics of two-dimensional backward-fac-ing step by numerical approach. A convection conservation difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar transitional and trubulent flow conditions at which the experimental data can be available for the backlward-facing step. The twenty kinds of reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement computations are performed on seven different meshes of uniformly increasing refinement. also to investigate the result of inflow dependence two kinds of the inflow profile are chosen for the laminar flow. Irregular grid is adopted to minimize the errors on the satis-faction fo the discretized continuity. As criterion of benchmarking the result of numerical simula-tion reattachment lengthis used for the selected Reynolds numbers. The results of the present study prove the fact that the numerical predictions agree well with the experimental data and the flow characteristics are shown at the backward-facing step.

  • PDF

Beckward Facing Step의 층류 유동 수치계산 (Numerical Computation of Laminar Flow over a Backward Facing Step)

  • ;반석호;김형태
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.150-161
    • /
    • 1993
  • 원초변수를 이용한 Navier-Stokes 방정식의 수치계산기법을 개발하고, 이를 응용하여 backward facing step의 층류 유동을 계산하였다. 직교좌표계에서의 비압축성 Navier-Stokes방정식을 풀기위해 시간과 공간항을 2차 정도의 유한 차분을 사용하여 이산화하였고 비교차격자계를 사용하여 양해법으로 수치 계산하였다. 운동량방정식과 연속방정식으로 부터 유도된 압력방정식(pressure-poisson equation)을 이용하여 무발산 조건을 만족시켰ㄲ다. Backward facing step의 층류 유동을 100.$\leq$R$_e$$\leq$1000 범위에 대해서 수치 계산하였으며 실험결과와 잘 일치하는 결과를 구할 수 있었다. 특히 step뒤에서 생기는 박리구간의 길이는 다른 계산결과들보다 실험치에 가까운 값을 얻을 수 있었으며, Re가 600보다 클때는 위쪽 벽에 또 다른 박리 유동이 발생되는 현상이 예측되었다.

  • PDF

축대칭 하향단흐름에서 자유흐름 난류강도의 영향 (Effects of the free Stream Turbulence Intensity on the Flow Over an Axisymmetric Backward-Facing Step)

  • 양종필;김경천;부정숙
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2328-2341
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purposes of the present study are to investigate the effect of the free stream turbulence intensity on the reattachment length and to understand the turbulence structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separated and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. As the free stream turbulence intensity increased, the reattachment length became shorter due to the enhanced mixing in the separated shear layer. It was also observed that the reverse flow velocity and turbulent kinetic energy increase with increasing free stream turbulence intensity. Spectral data and flow visualization showed that low-frequency motions occur in the separated flow behind a backward-facing step. These motions have a significant effect on the time-averaged turbulence data.

쉴리렌 간섭계에 의한 사각덕트내 후향계단후 유동에서의 혼합대류 전열에 관한 연구 (A Study on Mixed Convection Heat Transfer in Duct Flow behind a Backward-Facing Step by Using Schlieren Interferometer)

  • 백병준;박복춘;김진택
    • 설비공학논문집
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 1994
  • The flow and heat transfer characteristics behind a backward facing step located in a vertical channel has been studied. In this study, the numerical prediction has been performed by solving the Navier-Stokes equation and energy equation simultaneously with the SIMPLE algorithm embedied in TEACH code. Local heat flux was measured by using Schlieren Interferometer. The flow visualization was performed using the cylindrical lens and the laser beam that is scattered by the supplied glycerine particles. The velocity and temperature distributions, recirculation region, reattachment length, and local heat flux are obtained under the various parameters to investigate the buoyancy effect on the flow and heat transfer characteristics behind the step.

  • PDF