• Title/Summary/Keyword: Backward Reasoning

Search Result 34, Processing Time 0.021 seconds

Weighted Fuzzy Backward Reasoning Using Weighted Fuzzy Petri-Nets (가중 퍼지 페트리네트를 이용한 가중 퍼지 후진추론)

  • Cho Sang Yeop;Lee Dong En
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.115-124
    • /
    • 2004
  • This paper presents a weighted fuzzy backward reasoning algorithm for rule-based systems based on weighted fuzzy Petri nets. The fuzzy production rules in the knowledge base of a rule-based system are modeled by weighted fuzzy Petri nets, where the truth values of the propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by fuzzy numbers. Furthermore, the weights of the propositions appearing in the rules are also represented by fuzzy numbers. The proposed weighted fuzzy backward reasoning generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The algorithm we proposed can allow the rule-based systems to perform weighted fuzzy backward reasoning in more flexible and human-like manner.

  • PDF

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF

Fuzzy Reasonings based on Fuzzy Petei Net Representations (퍼지페트리네트 표현을 기반으로 하는 퍼지추론)

  • 조상엽
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.4
    • /
    • pp.51-62
    • /
    • 1999
  • This paper proposes a fuzzy Petri net representation to represent the fuzzy production rules of a rule-based expert system. Based on the fuzzy Petri net representation. we present a fuzzy reasoning algorithms which consist of forward and b backward reasoning algorithm. The proposed algorithms. which use the proper belief evaluation functions according to fuzzy concepts in antecedent and consequent of a fuzzy production rule. are more closer to human intuition and reasoning than other methods. The forward reasoning algorithm can be represented by a reachability tree as a kind of finite directed tree. The backward reasoning algorithm generates the backward reasoning path from the goal to the initial nodes and then evaluates the belief value of the goal node using belief evaluation functions.

  • PDF

Study on Inference and Search for Development of Diagnostic Ontology in Oriental Medicine (한의진단 Ontology 구축을 위한 추론과 탐색에 관한 연구)

  • Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.745-750
    • /
    • 2009
  • The goal of this study is to examine on reasoning and search for construction of diagnosis ontology as a knowledge base of diagnosis expert system in oriental medicine. Expert system is a field of artificial intelligence. It is a system to acquire information with diverse reasoning methods after putting expert's knowledge in computer systematically. A typical model of expert system consists of knowledge base and reasoning & explanatory structure offering conclusion with the knowledge. To apply ontology as knowledge base to expert system practically, consideration on reasoning and search should be together. Therefore, this study compared and examined reasoning, search with diagnosis process in oriental medicine. Reasoning is divided into Rule-based reasoning and Case-based reasoning. The former is divided into Forward chaining and Backward chaining. Because of characteristics of diagnosis, sometimes Forward chaining or backward chaining are required. Therefore, there are a lot of cases that Hybrid chaining is effective. Case-based reasoning is a method to settle a problem in the present by comparing with the past cases. Therefore, it is suitable to diagnosis fields with abundant cases. Search is sorted into Breadth-first search, Depth-first search and Best-first search, which have respectively merits and demerits. To construct diagnosis ontology to be applied to practical expert system, reasoning and search to reflect diagnosis process and characteristics should be considered.

Backward Reasoning in Fuzzy Petri - net Representation for Fuzzy Production Rules (퍼지생성규칙을 위한 퍼지페트리네트표현에서 후진추론)

  • Cho, Sang-Yeop
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.951-958
    • /
    • 1998
  • In this paper, we propose a backward reasoning algorithm which can be utilized in the fuzzy Petri-net representation representing fuzzy production rules. The fuzzy Petri-net representation can be used to model a approximate reasoning system and implement a fuzzy inference engine. The proposed algorithm, which uses the proper belief evaluation functions according to fuzzy concepts in antecedentes and consequents of fuzzy production rules, is more closer to human intuition and reasoning than other methods. This algorithm generates the backward reasoning path from the goal to the initial nodes and evaluates the belief value of the goal node using belief evaluation functions.

  • PDF

Development of a Backward Chaining Inference Methodology Considering Unknown Facts Based on Backtrack Technique (백트래킹 기법을 이용한 불확정성 하에서의 역방향추론 방법에 대한 연구)

  • Song, Yong-Uk;Shin, Hyun-Sik
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.123-144
    • /
    • 2010
  • As knowledge becomes a critical success factor of companies nowadays, lots of rule-based systems have been and are being developed to support their activities. Large number of rule-based systems serve as Web sites to advise, or recommend their customers. They usually use a backward chaining inference algorithm based on backtrack to implement those interactive Web-enabled rule-based systems. However, when the users like customers are using these systems interactively, it happens frequently where the users do not know some of the answers for the questions from the rule-based systems. We are going to design a backward chaining inference methodology considering unknown facts based on backtrack technique. Firstly, we review exact and inexact reasoning. After that, we develop a backward chaining inference algorithm for exact reasoning based on backtrack, and then, extend the algorithm so that it can consider unknown facts and reduce its search space. The algorithm speeded-up inference and decreased interaction time with users by eliminating unnecessary questions and answers. We expect that the Web-enabled rule-based systems implemented by our methodology would improve users' satisfaction and make companies' competitiveness.

An Inference Network for Bidirectional Approximate Reasoning Based on an Equality Measure (등가 척도에 의한 영방향 근사추론과 추론명)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.138-144
    • /
    • 1994
  • An inference network is proposed as a tool for bidirectional approximate reasoning. The inference network can be designed directly from the given fuzzy data(knowledge). If a fuzzy input is given for the inference netwok, then the network renders a reasonable fuzzy output after performing approximate reasoning based on an equality measure. Conversely, due to the bidirectional structure, the network can yield its corresponding reasonable fuzzy input for a given fuzzy output. This property makes it possible to perform forward and backward reasoning in the knowledge base system.

  • PDF

An Investigation on the Mathematical Instruction Utilizing Performance Tasks according to the Backward Design (수학 교과에서의 수행과제를 활용한 수업 방안 탐색 -백워드 이론을 기반으로-)

  • Hwang, Hye Jeang;Park, Hyun Ju
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • The purpose of this study was to explore the possibility of mathematical instruction through performance task activities based on the The Backward Design, which was suggested at first by Wiggins & McTighe in 1998. The Design deals with a performance assessment task involving the whole objective and its entire content of a lesson. Based on the Backward Design, this study established the mathematical instructional materials, which deal with the concept of 'the sector' taught in middle school, with one large performance task including three small tasks. It is important that in the lesson students be guided to achieve the several learning goals by themselves through reasoning activities. For this purpose, a formal interview was carried out by the subject of three middle school mathematics teachers. As a result, in order to implement the instruction utilizing the performance tasks more efficiently in future, it is required that a large performance task should be selected or developed including the content or problem contexts to be relevant with the real-life challenging situations. In addition, to make students enhance reasoning skills, it is strongly requested that the tasks including the utilization of supplementary materials such as technological devices or manipulatives be dealt with in a lesson.

Design and Implementation of a Hybrid Spatial Reasoning Algorithm (혼합 공간 추론 알고리즘의 설계 및 구현)

  • Nam, Sangha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.601-608
    • /
    • 2015
  • In order to answer questions successfully on behalf of the human contestant in DeepQA environments such as 'Jeopardy!', the American quiz show, the computer needs to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a hybrid spatial reasoning algorithm, among various efficient spatial reasoning methods, for handling directional and topological relations. Our algorithm not only improves the query processing time while reducing unnecessary reasoning calculation, but also effectively deals with the change of spatial knowledge base, as it takes a hybrid method that combines forward and backward reasoning. Through experiments performed on the sample spatial knowledge base with the hybrid spatial reasoner of our algorithm, we demonstrated the high performance of our hybrid spatial reasoning algorithm.

Fault Diagnosis of a Refrigeration System Based on Petri Net Model (페트리네트 모델을 이용한 냉동시스템의 고장 진단)

  • Jeong, S.K.;Yoon, J.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.187-193
    • /
    • 2005
  • In this paper, we proposes a man-machine interface design for fault diagnosis system with inter-node search method in a Petri net model. First, complicated fault cases are modeled as the Petri net graph expressions. Next, to find out causes of the faults on which we focus, a Petri net model is analyzed using the backward reasoning of transition-invariance in the Petri net. In this step, the inter-node search method algorithm is applied to the Petri net model for reducing the range of sources in faults. Finally, the proposed method is applied to a fault diagnosis of a refrigeration system to confirm the validity of the proposed method.

  • PDF