• 제목/요약/키워드: Backpropagation algorithm

검색결과 351건 처리시간 0.021초

Geneo-tic Algorithms를 이용한 비선형 시스템 제어 (Unknown Nonlinear Systems Control Using Genetic Algorithms)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 춘계학술발표논문집
    • /
    • pp.443-445
    • /
    • 2009
  • Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현 (A hardware implementation of neural network with modified HANNIBAL architecture)

  • 이범엽;정덕진
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

동적시스템의 자동동조를 위한 신경망 알고리즘 응용 (Neural Network Algorithm Application to Auto-tuning of Dynamic Systems)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 추계학술발표논문집
    • /
    • pp.186-190
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

로버스트 다층전방향 신경망을 이용한 패턴인식 (Pattern Recognition using Robust Feedforward Neural Networks)

  • 황창하;김상민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.345-355
    • /
    • 1998
  • 다층전방향 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있으나 이 알고리즘은 긴 훈련시간, 극소점 문제, 이상치에 민감하다는 단점을 가지고 있다. 한편 실제문제에서는 많은 경우에 자료에 과대오차와 이상치가 포함되게 된다. 따라서 과대 오차에 민감하지 않고, 이상치의 영향을 최소화시키는 로버스트 역전파 알고리즘의 필요성이 대두되었다. 본 논문에서는 기존의 두종류의 로버스트 역전파 알고리즘을 이론적으로 비교하고 비선형 회귀 함수추정과 문자인식과 같은 패턴인식 문제에 적용하여 실험결과를 분석한다. 그리고 향후 연구과제로 신경망 학습을 위해 베이지안 기법의 사용을 제안한다.

  • PDF

u-Health 시스템에서 슬라이딩 윈도우 기반 스트림 데이터 처리 (Stream Data Processing based on Sliding Window at u-Health System)

  • 김태연;송병호;배상현
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.103-110
    • /
    • 2011
  • u-Health 시스템의 센서들로부터 측정된 데이터에 대한 정확하고 에너지 효율적인 관리가 필요하다. 센서네트워크에서 대용량의 입력 스트림 데이터 전체를 데이터베이스에 모두 저장하여 한꺼번에 처리하는 것은 효율적이지 못하다. 본 논문에서는 u-Health 시스템 내 센서 네트워크의 에너지 효율성과 정확성을 고려하여 여러 센서에서 지속적으로 들어오는 다차원 스트림 데이터의 처리 성능을 높이고자 한다. 효율적인 입력 스트림 처리를 위해서 슬라이딩 윈도우 기반으로 질의를 처리하고 Mjoin 방법으로 다중 질의 계획을 수립한 후 역전파 알고리즘을 통해 저장 데이터를 축소하는 효율적인 처리 기법을 제안한다. 14,324개의 데이터 집합을 사용하여 실험한 결과 실제 입력되는 데이터보다 저장 공간의 18.3%를 축소함으로써 효과적임을 보였다.

신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템 (Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile)

  • 정완영;이승철
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

시스템 호출 기반의 사운덱스 알고리즘을 이용한 신경망과 N-gram 기법에 대한 이상 탐지 성능 분석 (Anomaly Detection Performance Analysis of Neural Networks using Soundex Algorithm and N-gram Techniques based on System Calls)

  • 박봉구
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.45-56
    • /
    • 2005
  • 컴퓨터 네트워크의 확대 및 인터넷 이용의 급격한 증가에 따라 네트워크 서비스 품질의 보장과 네트워크의 관리가 어려울 뿐만 아니라 네트워크 보안의 취약성으로 인하여 해킹 및 정보유출 등의 위협에 노출되어 있다. 특히 시스템 침입의 보안 위협에 대한 능동적인 대처 및 침입 이후에 동일하거나 유사한 유형의 사건 발생에 대해 실시간에 대응하는 것이 중요하므로 침임 탐지 시스템에 대한 많은 연구가 진행되고 있다. 본 논문에서는 시스템 호출을 이용하여 이상 침입 탐지 시스템의 성능을 향상시키기 위해, 특징 선택과 가변 길이 데이터를 고정 길이 학습 패턴으로 변환 생성하는 문제를 해결하기 위한 사운덱스 알고리즘을 적용한 신경망 학습을 통하여 이상 침입 탐지의 연구를 하고자 한다. 즉, 가변 길이의 순차적인 시스템 호출 데이터를 사운덱스 알고리즘에 의한 고정 길이의 행위 패턴을 생성하여 역전파 알고리즘에 의해 신경망 학습을 수행하였다. 역전파 신경망 기법을 UNM의 Sendmail Data Set을 이용하여 시스템 호출의 이상 탐지에 적용하여 성능을 검증하였다.

  • PDF

패턴인식의 MLP 고속학습 알고리즘 (A Fast-Loaming Algorithm for MLP in Pattern Recognition)

  • 이태승;최호진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권3호
    • /
    • pp.344-355
    • /
    • 2002
  • MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 여러 가지 훌륭한 특성을 가지고 있어 패턴인식에서 폭넓게 사용되고 있다. 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있다. 패턴인식에 사용되는 학습 데이타는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 온라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부변수 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 웅용에서 상당한 속도개선을 얻을 수 있지만, 학습률이 고정되고 학습이 진행됨에 따라 학습패턴 영역이 달라지는 학습과정의 각 단계에 효과적으로 대웅하지 못하는 문제가 있다. 이 문제에 대해 본 논문에서는 학습과정을 세 단계로 정의하고, 각 단계별로 필요한 패턴만을 학습에 반영하는 패턴별 가변학습속도 및 학습생략(ILVRS) 방법을 제안한다. ILVRS의 기본개념은 다음과 같다. 학습단계마다 학습에 필요한 패턴의 부분이 달라지므로 이를 구별 하여 학습에 적용할 수 있도록 (1)패턴마다 발생하는 오류치를 적절한 범위 이내로 제한하여 가변 학습률로 사용하고, (2)학습이 진행됨에 따라 불필요한 부분의 패턴을 학습에서 생략한다. 제안한 ILVRS의 성능을 입증하기 위해 본 논문에서는 패턴인식 응용의 한 갈래인 화자증명을 실험하고 그 결과를 제시한다.

압전 초음파 모터의 성능분석과 신경망 제어기 설계 (Design of Neural Controller and Performance analysis for Piezoelectric Ultrasonic Motor)

  • 유은재;김정도;홍철호;김동진;정영창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.754-756
    • /
    • 2004
  • The ultrasonic piezo motor is a new type motor that has an excellent performance and many useful features that electromagnetic motors do not have. But, it suffers from severe system non-linearities and parameter variations especially during speed control. Therefore, it is difficult to accomplish satisfactory control performance by using the conventional PID controller. In this paper, to achieve the precise control, we analyzed response time & change with a driving time, and proposed PD controller combined with neural network. The backpropagation algorithm is used to train a given trajectory. The effectiveness of the used method is confirmed by experiments. The effectiveness of the used method is confirmed by experiments using the ultrasonic motor made in Korea.

  • PDF

BACKPROPAGATION BASED ON THE CONJUGATE GRADIENT METHOD WITH THE LINEAR SEARCH BY ORDER STATISTICS AND GOLDEN SECTION

  • Choe, Sang-Woong;Lee, Jin-Choon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.107-112
    • /
    • 1998
  • In this paper, we propose a new paradigm (NEW_BP) to be capable of overcoming limitations of the traditional backpropagation(OLD_BP). NEW_BP is based on the method of conjugate gradients with the normalized direction vectors and computes step size through the linear search which may be characterized by order statistics and golden section. Simulation results showed that NEW_BP was definitely superior to both the stochastic OLD_BP and the deterministic OLD_BP in terms of accuracy and rate of convergence and might sumount the problem of local minima. Furthermore, they confirmed us that stagnant phenomenon of training in OLD_BP resulted from the limitations of its algorithm in itself and that unessential approaches would never cured it of this phenomenon.

  • PDF