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Abstract

In this paper, we propose a new paradigm(NEW_BP) to be capable of overcoming limitations of the traditional backpropagation(OLD_BP).
NEW_BP is based on the method of conjugate gradients with the normalized direction vectors and computes step size through the linear search
which may be characterized by order statistics and golden section. Simutation results showed that NEW_BP was definitely superior to both the
stochastic OLD_BP and the deterministic OLD_BP in terms of accuracy and rate of convergence and might surmount the problem of local
minima. Furthermore, they confirmed us that the stagnant phenomenon of training in OLD_BP resulted from the fimitations of its algorithm in
itself and that unessential approaches would never cured it of this phenomenon. ‘
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1. Introduction

The publication cf backpropagation method in the late 1980's made
a large contribution to the field of neural networks. In retrospect, the
great mass of researchers have tended to blindly accept this method
for many subsequent years.

The taditional backpropagation method(we call this OLD_BP as
shown under) implys the steepest descent method with no linear
search(line search, one-dimensional search, step sizing). The direction
of steepest descent method is always along the negative gradient. In
other words, the negative gradient gives the direction of the most rapid
decrease of function value.

But you remember that the new gradient is orthogonal to the
direction just traversed. Then the steepest descent method approaches
the minimum in a zigzag fashion, which does not, in general, take you
to the minimum.

Futhermore, OLD_BP takes a step size(learning-rate) to be some
fixed value which is reasonably a small number - on the order of 0.05
to 0.25 - to ensure that the function will converge to a solution. As
can be imagined, there are a lot of a fixed step size, ie, with no
linear search. A small value of step size requires a large number of
iterations. And the network may bounce around too far from the actual
minimum if too large.

Convergence of OLD_BP may be improved by the use of
momentum that is a valuable modification to the original method. This
additional term tends to keep changes in the same direction. However,
a zigzag manner still occurs and it is difficult to choose the fraction of

the previous direction added to the current gradient.(momenturr-rate)
The most serious problem in OLD_BP ftraining is the existence of
local minima, where the error at the network outputs may stili be

- unacceptably high. Local minima problem may be fixed by the

judicious use of white noise.(stochastic term) However, it is not a
perfect solution to this problem. Also, determining the initial
temperature is not easy.

It is undeniable that most researchers have been inclined to
manipulate the number of hidden nodes, step size, momentum-rate,
iniial temperature and inital weights in order to fix local minima
problem. To our regret, these manipulations may be unessential on the
ground that there is no guarantee that the network will works well.

Consequently, you have seen that the steepest descent method
with no linear search used in OLD_BP is not good leaming algorithm,
even with momentum and white noise.

Now, we propose a new paradigmithe proposed backpropagation)
to be capable of overcoming fimitations of OLD_BP. The proposed
backpropagation(we call this NEW_BP as shown under) is based on
the conjugate gradient method with normalized direction vectors and
performs the linear search characterized by order statistics and golden
section.

The method of conjugate gradients is a spedial case of the method
of conjugate directions and may be defined by the method of
proceeding not down the new gradient, rather than in a direction that
is somehow constructed to be conjugate to the old gradient and to all
previous directions traversed.

In connection with linear search, the cdosed form of approximate tO
step size is first derived by the use of order statistics and then once
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a iteration, two arguments included in this dosed form are computed
with the method of golden section.

2. Notation

To describe NEW_BP algorithm, we introduce the following notation.

[1] r —— = layer : input layer((), hidden layer(1~(L —1)),
and outputlayer(L).

[2] p, k —— # the p_th training data, the k__th iteration. :
I1<p<P, k=0
[3] N, —— =* number of the r—layer nodes except bias term.
n, —— *the n,_th r—layer node.: 0 <n,<N,(r + L)
and bias term, if n, = N,.
(4] X, —— * value of the p_th training data to the
ng__th input layer node.
Yo, —— * value of the p_th training data to the

np _th output layer node.

(5} win . dha, —— * weight and direction on the connection
from the n,.,_th (r—1)—layer node
to the n,_th r—Ilayer node.:n, #= N,

[6] net’,,, {5 (net’,, ) —— * net value and output value of the
n,_th r—layer node for the p_th training data.
{7 fonu(netopnn) = netonn,, = Xpp —— *npF N,
£ (net,) =1,(0) =1 —— #n =N,

£, (net,)

f, (ZW'M S (et 520 )
X (Wi £ et L) + whs, )
—— *r+0,n,#*N,
(8] Vec(A=[a;],,,) = [by];,, —= *h =il + i, where j is
a maximum integer less than or equal to% and
0<h<s(IJ-1D,0<i<(I-D,0<ij<(J-1).
(9] E(8) = E(Vac(w‘) Vec (W), ..., Vec(Wh))
=%;n2[yl’"t (anlnklfnll(zwnb - fL 2(
...... wjn‘n:fzn:(z“v_.w,.,,.,f‘,.,(nzw“,,.,fo.,,(netum,,)))......)))]'
—— = objective(error) function of the network. :
Wi = 0(r #0, L)
{10] Or = [O]N PN, L) W= [W;,n,ﬂ]

- T oy r
[dnl’l NN, LD G [gn.n,_|] N, %(N,_, +1}"
—=— x r~—layer zero, weight, direction and gradient matrix
respectively. 1+ 0, n, = N,

N,# (N, +1)°

{11] 6"={Vec(OY). ..., Vec(W"), Vec(O™*Y), ..., Vec(0")]"
A7=[Vec(0Y), ..., Vec(D"), Vec(O'*1), ..., Vec(OH)1"
e’ =[Vec(OY), ..., Vec(G"), Vec(O™* Y. ..., Vec(0)]"

Zﬁr = g, Z/lr = A, Zp'= o, t*0

[12) <»T =[VecT(0OY., ..., VecT(W"), VecT(O™Y), ..., VecT(OY)]
AT =[VecT(OY), ..., VecT (D", VecT(0"*1), ..., VecT(OY)]
T =[VecT(OY, ..., VecT(G"), Vec (O™, .. VecT(OY)]

2T =67, TANT =T, BeHT = 6T, 10
SECD - S, 6 (netnl )

[3
aW neNy oy

df’, (net',,)

d'net' > nzs;:}_[w'nilln', r+0,L and
S >

df% (nett,)

st — b, ~ L (nett
e dne’c[[,uL Wons (netsn,))

{131 g%

i

r -
ann. -

(14] VE(8) = p = [i(—@— ]L . —JEC)

Vec(W") 3VeC(W ) = VeeleD
—— * gradient vector of E(4).
*E(8
[15] H( 6) = [Hab] LxL" ab BVec(Wb) ¢(9\I)EC(WI)
PR
[ awn .. 0w, .]

—— = positive definite Hessian matrix. :
P=N.,x(N,;+1),q=N,X{(Np_; +1)

{161 Ixl = (xTx)*

3. NEW_BP : Algorithm and step size

3.1 Algorithm

Normalized direction vectors, 4. , are generated by

— Al + r_ r_
PR S/ L S R
I —oi + mi Akl )
A = __._(_:M
0 I —ool
where »,_, is a scalar and r + 0. Therefore,
r (“VCC(G{()"I”]i—lVCC(DL-]))
Vec(Dy ) = b=
= T ecth e Ve 0T <

(—Vec(Gg )

VeelD)) = T VecGp) I

A scalar pi., is chosen to make Ay H(#,) — conjugate 0

Ax-, ; that is, it is given as

<o TH( ) Ay
Q> TH(B DA,
VecT(G})H,.( Ok -1) Vec(Di_ )
Vec (DL _ )H.(6x_,)Vec(D,_)) *

r —
Tk-1 =

©)

k=1

The next point 4y, is generated from 6. by the linear search

—108—



in the direction of A and is expressed as

Biv) = O+ i A, k20 4)
Therefore,
Vec(Wi,,) = Vec(W) + riVec(DY) , k20 )

where 1y is a step size and we select it such that

Ming (E(8L = 200+ 6,,) =

)
E(Vec(Wy). ..., Vec(Wi,,)

..... Vec (WEN)

Let 4,5 which is an open subset in R* ; E(8%") can be

expanded into a Taylor series about 4,

Min, E(8%")

™
= Ming {E(01) + <ol Tdir + 5 <D THUBIA D)
From Eq. (7),
e T gr T T r

ot —<{p> AL - —Vec ' (Gy) Vec(D}) ®
KT T TH(OAL  Vec (DY) H,(6k) Vec(Dy)
Now, we can see

rl (P — ox-1) = H(b6_ AL, 9)
Tg-1

By substititing Eq. (9) into Eq. (3), we have an altemate form for

T
oL _Lew> (e —eioy)

” -1 = r r T
A ("k—1>T(Pk - PL—() (10)
__ Vec™(GL) (Vec(Gp) — Vec(Gi-y))
Vec (Di- 1) (Vec(G) — Vec(Gj - )
Also, from Eq. (8) and (9), we have Eq. (11).
opTAL =0 (1)

From Eq. (11),

(—<o>"eL)

<o AL =

=i+ T At 1 2)
From Eq. (12),
Z'L_1<X;,,I>TH(9|(}[)‘7{(-1 r (13)
= g i 1$ A=Y H(Oo ) Xz = {p4m 1 0y
Consequently, from Eq. (9) and (13), we obtain
r T r —~ T T r T 3 r
(o> P = Uk—sz—lUk—l)_‘_H(eu—x)/‘k—z (14
= -2 Tik-1$Ak-1) H(G2) A2 = 0
And we can get two altemate expression for p{_, ; that is, by
substituting Eq. (11) into (10)
c o <P oL~ e}
T-1= r T,r
<p-1? Ak (15)
VecT(GL)(Vec(GL_,) — Vec(GL))
VecT(GL_,) Vec(DL_))
and by substituting Eq. (14) into (15)
eT 1 T r r
. —<{pi> — Vec (Gi) Vec(GL)
Tl = Pk’ Py k k (16)

oo > A, VecT(Gi-1) Vec(Di-p)

As mentioned above, we have obtained three types for 7, .,.

We will adopt type |1 as the canonical form for i _, of NEW_BP.
(see Table 1)

Table 1 Three types for 7| _,

Tyoe| Ea. | (ol Aoy =0 (o) ok =0 Relation
| (10) not accepted not accepted Hestenes &
Stiefel ver.
li (15) accepted not accepted Polak &
Ribiere ver.
: Fletcher &
1! ) (16) accepted accepted Reeves ver. |
3.2 Step size

3.2.1 Closed form by the use of order statstics
From Eq. (9), Eg. (8) can be wnritten as

2 (E(6%) — E(6,))
o> A+ AT

an

T
LN
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since E(837) = E(6,) + (<ol A+ <ol T

However, Eq. (17) may not be a directly available expression since we
must estmate pl., and E(8%") . For this reason, we will grant
three desirable properties to m(ﬁ) which is the mean of ;,i , an
estimate of rL with the purpose of a successful training. We can
analytically derive the unique m(;i) which satisfies three properties

and then use this as the good approximate to rj . These three

desirable properties are as follows.

[Property 1] 8}, lies in a given direction A, from gy ; that is,
Vec(Wi,,) lies in a given direcion Vec(Dj) from
Vec(Wi) .

[Property 2} <&, i, .ty ', 7y are independent and identically

distributed  continuous  uniform (L, , U,) random

variables.
(Property 3] 7 < 73 € - K TR LG K

In short, if Eq. (17) satisfies the above-mentioned properties, it
can be written as

2(E(61) —E(8)
A<p;>TAL ' (18)

LoC el L

¢ riTi¢ rﬁ(Uk

o~
Tk

From Eq. (18), we get

2 {m(E(63)) - E(8,)}
(pi)T/l{(

Ly Crlem(B)<Celam(R) G- ek tam(fE ) Cop (19)

—~
rixm(ry)=

tm(??)( Uy

Let 7 be the r, smaliest value of (rl. i, r":_l, ).

By this definiion, z{ < £ ¢ oo Celh oY are the order
statistics corresponding to the random variables

(el ¥, -, rk7Y, D). Therefore, the density and distribution
function of (" are given by

1 oy-L
’(L[:'_(——%()'_(rk‘}—)T)'_ (=L)"Y U - b,

where L, r < Uy (20)

frﬁ"(t) =

Fr‘(:)(t.) = J:fr:-)(l')dz', where LkS T‘SUk

. By {Property 3],
m(7}) = m(e{) = 7k (21

From Eq. (20), we obtain

m(l‘;((r)) — {rLCr)Z; _L:.'(.:"_(:__]'):}Uk

x+r+1 -
—r__L-Lx(:_l_)x_
+{rLC’x= (x+1r)(x+r+1)}Lk
Using Eq. (19) and (20),
=" 'rcx(-l)x
e, 5 R =1 @)
And we can see
mcx(—l)x _ 1
,Zzb x+1 T m+1 (24)
From Eq. (23) and (24).
= C (=1 1
; x+r+1 - (L+1)Lcr.1SrSL (25)

Finally, by Eq. (23) and (25), Eq. (22) is expressible as

m(e) = (757 U+ (BT e =m(z)=cl - @)

In condclusion, we have obtained Eq. (26), that is, the dlosed form of a
good approximate to the true step size, rj .

3.2.2 Computation L, , U, by the use of golden section

The golden section requires use of the Fibonacd fractions
3-V5 V5-1
2 2

and . A key property of this procedure is that only

one new point need be evaluated at each iteration due to the fact that

one point has already been determined. In other words, L, and Uk

in Eq. (26) can be determined at each iteration, onlty compared
E(8,) with E(6,-,) .
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Let (bL,el) and (by, e}) be the intervals where L, and U,

lie respectively.
If E(f-)=E(6) for all k=22,

(1) (bE. el) = (pli-1. et‘/_-l). Y, ey = (oY1, el )
(2) phiy = bioy + 252 ek — i),
D}J.lrl = blzjfl + M(eg-l —b;‘f_l)

2
(3) D{',k =pry-1 = b+ ”&2:1'(61[{—1 —bi-y).
N
Pl = PLu-1 = b + ““%—1’(38—1 ~bi-y)

(4) P = Lic= bl + L37L ek b,

ng = Uy = b;l! + I%-_L(eg - bE)

Therefore, rL:( T £ 1 )pgk + ( L'Hi)!)%.k @n

+ L+1

if E(6i.,)<E(6,) for all k=2,

¢h) (bt.ell(') = (bll;‘x. p%,k-l) . (bE.eE) = (bE-l.DlzJ,k—-l)
(2) Pra-y = by + ﬁz—”i(et-, = bi-1),

. JEo
DZU‘k—-l = btl—x + —52—‘1_(5}3—1 "bllg—l)

-v¥5
(3) Yy =DPlu-1 = by + 3 7 (eko; —br_p),
7 pﬁk,w:bfal%—uﬁi(efﬂ-—bg_l)

P2k 2

L,==bl+ }—%ﬁ(et —bb)

i

(4) D}"k
DEk =V, = b,[f +

305 (e - )

Theretore, = (7 Job + (Tt Jote (28)

For k=0,

e () A5 )+

(st » 55 )

(29)

and for k=1,

L L
where bV =b). el =ef, bt =bf. el =ef.

Suppose Max, 7§ = Max, rp<C , where C

positive constant, in general, 1 so as o

is a given

determine

u . L
bo.e(‘]'},bxo‘ andeo-

We intend to maximize (b’ < Uy<ef) M (bf < Ly<ef) subject to

Uo L'LD L'[Jo Lo
Lot Te 20U ke TR Y TRT CC
Thus, f by =0 , we have
—et= € - L
by =ef =5 . el =C(L+ 5 ) @

4. Simulation example
(See Table 2)
4.1 First case : XOR problem
(See Tables 3, 4)
4.2 Second case : Evaluation of Rosenbrock function value
(See Tables 3, 5)
5. Concluing remarks
From simulation results, compared with OLD_BP, NEW_BP has
three major advantages. These are as follows.
@® NEW_BP is by far general, ie., OLD_BP is a spedal case of
NEW_BP.
@ NEW_BP is definitely superior to OLD_BP in terms of accuracy and
rate of convergence.

@ NEW_BP may surmount the problem of local minima.

Table 2 Input parameters in four simulations

OLD_BP NEW_BP
i j Momentum Initial
Simuiation Step Size Type| C Type
-Rate | Temperature
1 0.3 0.15 0 d* 0.3 1
2 0.2 0.1 0 d 0.2 I
3 0.3 0.15 0.001 s | 0.15 1
4 0.2 0.1 0.001 S 0.1 It
* . deterministic ™ : stochastic
Table 3 Simulation environment in two cases
First | Train-
Input Hidden Output| Output | Error | Max. | Initial ing
i
Nodes Nodes | Function| Level {Iteration|Weights
Nodes Data
18t 2 2 1 sigmoid | 1E-12| 3000 n* 4
1 ) -
Case 9 ‘
2.na 14 10 7 igmoid | 1E-12| 5000 20 |
moi - n :
sig |
* : normalized
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Table 4 Simulation results of 1_st case, XOR problem

Simulation| Run Run

OLD_BP NEW_BP

{terations Eror fterations Error
Time Time

1.43| 3000 {0.008530726532| 0.16 500  {0.000000000000

1.43 ] 3000 }0.095760896064| 0.27 800 | 0.000000000000

1.43| 3000 {0008250918171| 0.38 | 1000 |0.000000000000

BlWiN[—+

1.43 | 3000 {0.084207681382| 0.49 | 1400 |0.000000000001

Table 5 Simuation results of 2_nd case, Rosenbrock function evaluation

OLD_BP NEW_BP B
i i Run Run
Simulation Iterations Error Iterations Error
Time Time
| 1 95 5000 }0.007649889714|19.89| 1200 10.000000000001
2 95 5000 10.012565657528(29.62] 1800  |0.000000000000
3 94.84] 5000 10007521271519{37.80] 2300 |0.000000000001
4 94.84| 5000 [0.011901285573|57.47| 3500 |0.000000000000
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