• 제목/요약/키워드: Backpropagation Algorithm

검색결과 351건 처리시간 0.029초

신경망을 이용한 DS/SS 시스템의 PN 코드의 초기 동기 (Acquisition of PN sequence by neural netowrks in direct-sequence spread-spectrum systems)

  • 이상목;유철우;강창언;홍대식
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.44-54
    • /
    • 1996
  • In DS/SS systems it is necessary to synchronize the locally generated despreading signal with the received spreading signal to demodulate the received signal. The synch process between the two signals is usually accomplished in two steps : first acquisition then tracking. In this paper, an acquisition system aided by the neural network is proposed for the rapid and exact acquisition in DS/SS. the neural netowrk is composed o fthree-layered perpecptrons and trained by the backpropagation algorithm. The performance of the proposed system is analyzed and compared with ones of conventional systems using the sequential estimation technique under an additive while gaussian noisy channel. In all of th econsidered simulations, the proposed system outperforms conventional systems.

  • PDF

인공신경망을 이용한 퍼지 규칙 인식 시스템 (Fuzzy Rule Identification System using Artifical Neural Networks)

  • 장문석;장덕철
    • 한국정보처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.209-214
    • /
    • 1995
  • 일반적으로 퍼지 시스템 모델링에 있어서, 퍼지 규칙을 인식하고 퍼지 추론의 소속함수를 조정하기란 매우 어렵다.본 논문에서는 인공신경망을 이용함으로써,자동으로 퍼지 규칙을 인식하고 동시에 퍼지 추론의 소속함수를 조정할수 있는 방법을 제시하였다. 본 모델은 역전파를 기본으로 한 알고리즘으로 학습하며,이 방법의 타당성을 로보트 매니퓰레이터를 통해 검증한다.

  • PDF

신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구 (A Study on Distance Relay of Transmission with UPFC Using Artificial Neural Network)

  • 박정호;정창호;신동준;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.196-198
    • /
    • 2002
  • This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault on transmission lines need to be detected, classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algorithm based multi-layer perceptron is utilized for the learning process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.

  • PDF

신경회로망 알고리즘을 이용한 유도전동기 속도제어어 관한 연구 (Study on Induction Motor Speed Control using Neural Network algorithm)

  • 이훈구;오봉환;이승환;전기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.49-51
    • /
    • 2003
  • This paper presents a speed control system of induction motor using neural network. The speed control of induction motor was designed to NNC(Neural Network Controller) and NNE(Neural Network Estimator) used backpropagation, the NNE was constituted to be get an error value of output of an induction motor and conspire an input/output. NNC is controled to be made the error of reference speed and actual speed decrease, and in order to determine the weighting of NNC can be back propagated through the NNE, and it is adapted to the outside circumstances and system characters with learning ability.

  • PDF

영구자석 동기모터를 위한 CTRNN모델 기반 적응형 PI 제어기 설계 (Adaptive PI Controller Design Based on CTRNN for Permanent Magnet Synchronous Motors)

  • 김일환
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.635-641
    • /
    • 2016
  • In many industrial applications that use the electric motors robust controllers are needed. The method using a neural network in order to design a robust controller when a disturbance occurs is studied. Backpropagation algorithm, which is used in a conventional neural network controller is used in many areas, but when the number of neurons in the input layer, hidden layer and output layer of the neural network increases the processing speed of the learning process is slow. In this paper an adaptive PI(Proportional and Integral) controller based on CTRNN(Continuous Time Recurrent Neural Network) for permanent magnet synchronous motors is presented. By varying the load and the speed the validity of the proposed method is verified through simulation and experiments.

An Adaptive Learning Rate with Limited Error Signals for Training of Multilayer Perceptrons

  • Oh, Sang-Hoon;Lee, Soo-Young
    • ETRI Journal
    • /
    • 제22권3호
    • /
    • pp.10-18
    • /
    • 2000
  • Although an n-th order cross-entropy (nCE) error function resolves the incorrect saturation problem of conventional error backpropagation (EBP) algorithm, performance of multilayer perceptrons (MLPs) trained using the nCE function depends heavily on the order of nCE. In this paper, we propose an adaptive learning rate to markedly reduce the sensitivity of MLP performance to the order of nCE. Additionally, we propose to limit error signal values at out-put nodes for stable learning with the adaptive learning rate. Through simulations of handwritten digit recognition and isolated-word recognition tasks, it was verified that the proposed method successfully reduced the performance dependency of MLPs on the nCE order while maintaining advantages of the nCE function.

  • PDF

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

PSD 및 역전파 알고리즘를 이용한 AM1 로봇의 제어 시스템 설계 (Design of AM1 Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;이종붕;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.239-243
    • /
    • 2001
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

The prediction of interest rate using artificial neural network models

  • Hong, Taeho;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.741-744
    • /
    • 1996
  • Artifical Neural Network(ANN) models were used for forecasting interest rate as a new methodology, which has proven itself successful in financial domain. This research intended to construct ANN models which can maximize the performance of prediction, regarding Corporate Bond Yield (CBY) as interest rate. Synergistic Market Analysis (SMA) was applied to the construction of models [Freedman et al.]. In this aspect, while the models which consist of only time series data for corporate bond yield were devloped, the other models generated through conjunction and reorganization of fundamental variables and market variables were developed. Every model was constructed to predict 1,6, and 12 months after and we obtained 9 ANN models for interest rate forecasting. Multi-layer perceptron networks using backpropagation algorithm showed good performance in the prediction for 1 and 6 months after.

  • PDF

신경회로망을 응용한 현가장치의 폐회로 시스템 규명 (Empirical Closed Loop Modeling of a Suspension System Using Neural Network)

  • Kim, I.Y.;Chong, K.T.;Hong, D.P.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.29-38
    • /
    • 1997
  • A closed-loop system modeling of an active/semiactive suspension system has been accomplished through an artificial neural network. A 7DOF full model as a system's equation of motion has been derived and an output feedback linear quadratic regulator has been designed for control purpose. A training set of a sample data has been obtained through a computer simulation. A 7DOF full model with LQR controller simulated under several road conditions such as sinusoidal bumps and rectangular bumps. A general multilayer perceptron neural network is used for dynamic modeling and target outputs are fedback to the a layer. A backpropagation method is used as a training algorithm. Model validation of new dataset have been shown through computer simulations.

  • PDF