• Title/Summary/Keyword: Backpropagation Algorithm

검색결과 351건 처리시간 0.028초

신경망을 이용한 비전 시스템의 2차원 물체의 인식에 관한 연구 (A Study on 2-Dimensional Objects Recognition of Vision System using Neural Network)

  • 홍진철;김연태;정경채;이해영;이석규;이달해
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.787-790
    • /
    • 1995
  • This paper proposes a method to recognize object with 2-dimension image. In most cases, it takes too many processes, complicate algorithm and time to recognize object with expert system because of inherent comfiguration of the object. This paper includes some processing steps such as pre-processing method, recognition method with neural network and learing algorithm of multi-layer perceptron using error backpropagation.

  • PDF

학습제어를 이용한 도립진자의 안정화제어에 관한 연구 (A Study on the Stabilization Control of an Inverted Pendulum Using Learning Control)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.168-175
    • /
    • 1999
  • Unlike a general inverted pendulum system which is moved on the cart the proposed inverted pendulum system in this paper has an inverted pendulum which is moved on the two-degree-of-freedom parallelogram link. The dynamic equation of the pendulum system activated by the DD(Direct Drive)motor includes many nonlinear terms and has the high degree of freedoms. The problem is followed hat the exact mathmatical equations can not be analized by a general linear theory However the neural network trained by a simple learning method can control the dynamic system with hard nonlinearities. Learning procedure is the backpropagation algorithm with super-visory signal. The plant inputs obtained by the designed neural network in this paper can stabilize the pendu-lem and get the servo control. Experiment results have proce the effectiveness of the designed neural network controller.

  • PDF

패턴분류에서 학습방법 개선 (Improvement of learning method in pattern classification)

  • 김명찬;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.594-601
    • /
    • 1997
  • A new algorithm is proposed for training the multilayer perceptrion(MLP) in pattern classification problems to accelerate the learning speed. It is shown that the sigmoid activation function of the output node can have deterimental effect on the performance of learning. To overcome this detrimental effect and to use the information fully in supervised learning, an objective function for binary modes is proposed. This objective function is composed with two new output activation functions which are selectively used depending on desired values of training patterns. The effect of the objective function is analyzed and a training algorithm is proposed based on this. Its performance is tested in several examples. Simulation results show that the performance of the proposed method is better than that of the conventional error back propagation (EBP) method.

  • PDF

역전파 알고리즘을 이용한 자율주행로봇의 장애물 회피계획 설계 (Design of Obstacle Avoidance Plan of Autonomous Mobile Robot Using Backpropagation)

  • 박경석;김영수;이경웅;최한수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2588-2590
    • /
    • 2003
  • The part of manipulators is normally studied with regularized environmental conditions. however, it is the most difficult that the part of AMR must be studied with uncertainty in the environmental conditions. The part of AMR has skelton, sensor fusion, path planning etc. This paper is the research of the local pass planning that gathers information about external environment using neural network from each sensors and designs the algorithm which can determine which correct direction the robot can find. As the result of the research, AMR has been able to drive similarly as if the expert does and has been able to observe it acting without any control.

  • PDF

Wireless Channel Identification Algorithm Based on Feature Extraction and BP Neural Network

  • Li, Dengao;Wu, Gang;Zhao, Jumin;Niu, Wenhui;Liu, Qi
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.141-151
    • /
    • 2017
  • Effective identification of wireless channel in different scenarios or regions can solve the problems of multipath interference in process of wireless communication. In this paper, different characteristics of wireless channel are extracted based on the arrival time and received signal strength, such as the number of multipath, time delay and delay spread, to establish the feature vector set of wireless channel which is used to train backpropagation (BP) neural network to identify different wireless channels. Experimental results show that the proposed algorithm can accurately identify different wireless channels, and the accuracy can reach 97.59%.

GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘 (Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

기울기하강과 동적터널링에 기반을 둔 학습알고리즘의 신경망을 이용한 영상데이터의 주요특징추출 (Principal Feature Extraction on Image Data Using Neural Networks of Learning Algorithm Based on Steepest Descent and Dynamic tunneling)

  • 조용현
    • 한국정보처리학회논문지
    • /
    • 제6권5호
    • /
    • pp.1393-1402
    • /
    • 1999
  • 본 논문에서는 새로운 학습알고리즘의 3층 전향 신경망을 이용한 입력데이터의 주요 특징추출에 대해서 제안하였다. 제안된 학습알고리즘에서에서는 빠른 수렴속도의 최적화가 가능하도록 하기 위하여 기울기하강의 역전파 알고리즘을 이용하고, 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치의 설정을 위하여 동적터널링의 역전파 알고리즘을 이용함으로써 빠른 수렴속도로 전역최적해로에 수렴되도록 학습시킬 수 있다. 제안된 학습 알고리즘을 이용한 다층신경망을 $12{\times}12$ 픽셀의 영상 데이터들과 $128{\times}128$ 픽셀의 Lenna 영상데이터를 대상으로 시뮬레이션한 결과, 단층신경망을 이용하는 Sanger 방법이나 측면연결을 가지는 단충신경망을 이용하는 Foldiak 방법 및 기울기하강에 기초를 둔 기존의 역전파 알고리즘을 이용한 다층신경망에 의한 결과와 비교할 때 더욱 우수한 수렴성능과 추출성능이 있음을 확인할 수 있었다.

  • PDF

신경망을 이용한 터보제트 엔진의 고장 진단 (Sensor Fault Detection and Isolation of a Turbojet Engine Using Neural Network)

  • 김종선;이강웅;김진곤;부준홍;유상신;민성기
    • 한국항행학회논문지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1999
  • 본 논문에서는 터보제트 엔진 제어기의 신뢰성을 향상시키기 위한 지능형 고장진단 알고리즘을 제안하였다. 제안된 기법은 다층 신경망을 이용한 고장진단 기법으로 서로 다른 종류의 센서를 사이의 기능적 종속관계를 추정하여 고장 부위를 규명하고 처치한다. 고장센서 신호는 역전파 알고리즘을 이용한 훈련된 신경망을 통하여 추정한다. 실험데이터에 기초한 터보제트 엔진의 선형공간 모델에 적용한 시뮬레이션을 통하여 제안된 알고리즘의 구현 가능성을 검증한다.

  • PDF

HCM 클러스터링 기반 FNN 구조 설계 (Design of FNN architecture based on HCM Clustering Method)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF