• Title/Summary/Keyword: Background temperature difference

Search Result 127, Processing Time 0.028 seconds

Assessment of Semen Quality among Workers Exposed to Heat Stress: A Cross-Sectional Study in a Steel Industry

  • Hamerezaee, Masoud;Dehghan, Somayeh F.;Golbabaei, Farideh;Fathi, Asad;Barzegar, Loghman;Heidarnejad, Naseh
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.232-235
    • /
    • 2018
  • Background: This study was conducted to investigate the heat stress and semen quality among male workers in a steel industry in Iran and investigate the relationship between heat stress indices and semen parameters. Methods: The study was conducted on workers exposed (n = 30) and unexposed (n = 14) to heat in a steel industry. After obtaining a brief biography of the selected employees, scrotal temperature, oral temperature, and environmental parameters were measured, and their semen samples were analyzed according to the procedure recommended by the World Health Organization. The heat stress indices, including wet-bulb globe temperature (WBGT) and predicted heat strain (PHS), in their workplace were calculated according to environmental parameters (ISO 7243:1989 and 7933:2004, respectively). Results: Time-weighted averages of WBGT and PHS ($35.76^{\circ}C$ and 491.56 $w/m^2{\frac{w}{m^2}}$, respectively) for the exposed group were higher than threshold limit values. The mean difference of environmental, physiological, and semen parameters (exception: pH of semen), and also WBGT and PHS indices were statistically significant (p < 0.05) between the two groups. Mean semen parameters were in the normozoospermic range. WBGT and PHS indices showed significantly "negative" correlation with physiological parameters (scrotal and oral temperature) and most semen parameters (semen volume, sperm morphology, sperm motility, sperm count; p < 0.05); moreover, the correlation of WBGT with these parameters was stronger than PHS. Conclusion: Semen parameters of the studied workers exposed to heat were in the borderline level of normozoospermic range, and their semen parameters were significantly lower than controls. For better assessment of occupational environment concerning physiological and semen parameters in steel industries, WBGT can be a more useful index.

Monitoring the phenology of Forsythia velutina, an endemic plant of Korea

  • Sung, Jung-Won;Kim, Geun-Ho;Lee, Kyeong-Cheol;Shim, Yun-Jin;Kang, Shin-Gu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Background and objective: This study was conducted on Forsythia velutina, a special plant, in Gyeongsangnam-do Arboretum under the Gyeongsangnam-do Forest Environment Research Institute, which is located in the southern part of Korea. Methods: The research aimed to analyze the flowering characteristics of the plant by calculating the optimal temperature and humidity according to the flowering time and flowering period for 8 years from 2010 to 2017 in order to provide basic data for bioclimate studies of endemic plants. Results: It was observed that the Forsythia velutina showed a life cycle from mid-March and to mid-November. Average growth period was 243 (± 6.5) days. In testing the reliability of a single variable according to the meteorological factors, the Cronbach's Alpha was 0.701, which indicates that the findings were relatively reliable. The average date of flowering was March 16 (SD = 5.8) and the average date on which blossoms fall was March 29 (SD = 5.2). A substantial difference in flowering period was observed from year to year 11 to 23 days, with an average of 16 days (± 4.7). The temperature and humidity in February to March, which affect the flowering, were 2.9-5.5℃, and 66.5-73.0%, respectively, and showed differences every year. Conclusion: The correlation between flowering time and meteorological factors was positive, and the highest daily temperature and average daily temperature had the highest significance. When establishing basic data on plant species for the conservation of endemic plants, the changes in life cycle events and weather conditions are identified. It is believed that it will be helpful in establishing a conservation strategy for the plant species in the future.

Development of a Virtual Frisch-Grid CZT Detector Based on the Array Structure

  • Kim, Younghak;Lee, Wonho
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Background: Cadmium zinc telluride (CZT) is a promising material because of a high detection efficiency, good energy resolution, and operability at room temperature. However, the cost of CZT dramatically increases as its size increases. In this study, to achieve a large effective volume with relatively low cost, an array structure comprised of individual virtual Frisch-grid CZT detectors was proposed. Materials and Methods: The prototype consisted of 2 × 2 CZTs, a holder, anode and cathode printed circuit boards (PCBs), and an application-specific integrated circuit (ASIC). CZTs were used and the non-contacting shielding electrode method was applied for virtual Frisch-grid effect. An ASIC was used, and the holder and the PCBs were fabricated. In the current system, because the CZTs formed a common cathode, a total of 5 channels were assigned for data processing. Results and Discussion: An experiment using 137Cs at room temperature was conducted for 10 minutes. Energy and timing information was acquired and the depth of interaction was calculated by the timing difference between the signals of both electrodes. Based on obtained three-dimensional position information, the energy correction was carried out, and as a result the energy spectra showed the improvements. In addition, a Compton image was reconstructed using the iterative method. Conclusion: The virtual Frisch-grid CZT detector based on the array structure was developed and the energy spectra and the Compton image were successfully acquired.

DESIGN OF THE RLG CURRENT STABILIZER CIRCUIT FOR ATTITUDE CONTROL IN THE SATELLITE (위성 자세제어용 RLG 전류 안정화 회로 설계)

  • Kim Eui-Chan;Choi Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In this paper, we describe the RLG current stabilizer circuit for attitude control in the satellite. The RLG makes use of the Sagnac effect within a resonant of a HeNe laser. The difference between two discharge currents causes one of the gyro bias errors. The theoretical background and current stabilizer are introduced. It is verified that the circuit designed is applicable to the test of input voltage and temperature.

Free Volume in polymers. Note I。 : Theoretical background

  • Consolati, G.;Pegoraro, M.;Zanderighi, L.
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.8-24
    • /
    • 1999
  • free volume in polymers is defined as the difference of the specific volume and the volume which is not available for the particular molecular motion which is responsible or the process that is considered . Relations between free volume and viscosity free volume and diffusion coefficient are pre-sented both in the case of simple low molecular weight liquids and in the case of polymers. Molecular models and free volume models are reminded starting from the equilibrium state equation of Simha and Somcynski. The non equilibrium situations of specific volume of glass polymers below Tg are shown introducing different relaxation volume equations which involve different material's parameters and con-cept of the fictitious temperature. The diffusivity equations of Vrentas and Duda are introduced both for the glassy and rubbery states. The possibility of introducing time relaxation functions is also suggested. The importance of finding experimental evidences of the free volume is stressed. highlights of the free volume measurement methods are given in particular as to dilatometry photocromy fluorescence electron spin resonance small angle X-ray scattering positron annihilation spectroscopy.

  • PDF

Influence of Water Temperature, Background Color, and Light Intensity in Feeding, Growth and Blind-Side Hypermelanosis of Starry Flounder, Platichthys stellatus (강도다리, Platichthys stellatus의 먹이섭식, 성장 및 무안측 체색발현에 있어 수온, 수조색상 및 조도의 영향)

  • Kang, Duk-Young;Kim, Won-Jin;Kim, Hyo-Chan;Chang, Young Jin
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.185-193
    • /
    • 2014
  • To find the influence of water temperature, tank color and illumination in feeding, growth and blind-side hypermelanosis of starry flounder, Platichthys stellatus, in the present study, we performed a series of temperature, background color and illumination intensity test for 180 days (From June to December). The test was done in duplicate at 100 fish/tank (430% of initial covering area [PCA]) with the selected ordinary juvenile flounder (TL $17.3{\pm}0.5cm$, BW $82.5{\pm}0.2g$). The rearing was performed in darkgreen FRP aquarium tanks ($H100cm{\times}L100cm{\times}W100cm$; bottom area $1m^2$) lighten with average 1,000 lux and 230 lux, and in white FRP aquarium tank ($H100cm{\times}L100cm{\times}W100cm$; bottom area $1m^2$) lighten with average 230 lux of light intensity. We investigated correlation of daily food intake (DFI) with water temperature and salinity, and compared the influences of background colors and light intensity in DFI, food efficiency (FE), growth, survival rate, and ratio of malpigmented blind-side area and ambicolored fish ratio. In DFI, although it was not related with salinity, the amount was significantly decreased under 0.5 g/fish/day in summer and winter season, but was significantly increased over 1.5 g/fish/day in autumn season showing from $10^{\circ}C$ to $20^{\circ}C$ in water temperature. In background and illumination test, DFI, FE and survival rate showed no difference among three groups. The ratios of malpigmented blind-side area and ambicolored fish were also not significantly different among three groups, indicating that the blind-side hypermelanosis of starry may be governed not by background color (or light intensity) but by a genetics external trait inherited from parents.

Analysis of Heat Environment in Nursery Pig Behavior (자돈의 행동에 미치는 열환경 분석)

  • Sang, J.I.;Choi, H.L.;Jeon, J.H.;Jeon, B.S.;Kang, H.S.;Lee, E.S.;Park, K.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2009
  • This study was conducted to find ways to control environment with the difference between body temperature and background temperature based on swine activity, and to apply to the environment control system of swine barns based on the findings. Following are the results. 1. Swine activity related to background temperature was achieved as color images and swine activity status was categorized into cold, comfortable, and hot periods with visualization system (thermal image system). 2. Thermal image system consisted of an infrared CCD camera, an image processing board - DIF (TH3100), an main computer (400Hz, 128M, 586 Pentium model) with C++ program installed. 3. Thermal image system categorizing temperatures into cold, comfortable, and hot was applicable to the environment control system of swine barns 4. Feed intake was higher in cold temperature, and finishing weight and weight gain per day in cold temperature were lower than others (p<0.05).

  • PDF

Evaluation of the Therapeutic Effects in Pain Management Using Infrared Thermal Imaging (적외선 체열촬영을 이용한 통증 치료효과의 평가)

  • Kim, Min-Jung;Lee, Seung-Yoon;Kim, Seong-Hyop;Lim, Jeong-Ae;Kang, Po-Soon;Woo, Nam-Sik;Lee, Ye-Chul
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • Background: Infrared Thermal Imaging (ITI) is an effective tool for the diagnosis of disease and evaluation of the therapeutic effects following pain treatment. Patients who were treated for pain in pain clinic described the intensity of pain and the degree of change of their pain using a visual analogue scale (VAS). In this study, the usefulness of ITI following multimodal methods for pain management were compared with the change of VAS. Methods: 1119 patients were evaluated. The patients were treated with stellate ganglion block, epidural block or trigger points injection. Before treatment, the temperature difference (${\Delta}T$) of the involved area and the corresponding area on the opposite side of the body was measured using ITI and VAS was assessed. After treatment, the temperature difference (${\Delta}T$) between the normal and involved areas, the change of ${\Delta}T$ (${\Delta}dT$), VAS and the change of VAS (${\Delta}VAS$) were measured. Statistic correlations between ${\Delta}dT$and ${\Delta}VAS$ were calculated in all groups. Results: Correlation of the ${\Delta}dT$ and ${\Delta}VAS$ was significant by contingency coefficient test. (SGB group, C = 0.358, Epi group, C = 0.377, TPI group, C = 0.374, P < 0.05) Conclusions: ITI is a reliable tool for the assessment of therapeutic effects following multidimensional management of painful disease.

  • PDF

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Gender Differences in Heat Pain and Temporal Summation Threshold in Normal Volunteers (정상 자원자에서 열통증과 시간적 가중 역치에 대한 남녀 차이)

  • Lee, Joon Ho;Yoo, Jae Hwa;Cho, Sung Hwan;Kim, Yong Ik
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2008
  • Background: Females generally have a lower pain and temporal summation threshold than men. However, the results of studies designed to evaluate gender differences in the thresholds of heat pain and the temporal summation have been inconsistent. Newly developed device, CHEPS (Contact Heat Evoked Potential Stimulation) model of PATHWAY, have superiority on its fast rise and return time in temperature. Therefore we investigated gender differences in heat pain and temporal summation threshold. Methods: Forty healthy volunteers (20 males and 20 females) were enrolled in this study. A thermode was applied to the volar side of each volunteer's left forearm and heat pain and the temporal summation threshold was then measured. The heat pain threshold was estimated using the staircase method by starting from $36^{\circ}C$ and then increasing the temperature in $0.5^{\circ}C$ increments. The temporal summation threshold was estimated by applying five successive stimulation of the same temperature starting at $2^{\circ}C$ lower than the heat pain threshold and then increasing the temperature in $0.5^{\circ}C$ increments. Results: The mean heat pain thresholds was found to be $41.63{\pm}1.63^{\circ}C$ for males and $41.60{\pm}1.84^{\circ}C$ for females and the temporal summation thresholds were found to be $40.83{\pm}1.64^{\circ}C$ for males and $40.77{\pm}1.93^{\circ}C$ for females. The differences between males and females were not statistically significant. Conclusions: The result of this study suggested that there are no gender differences in heat pain and temporal summation threshold.