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Abstract : Free volume in polymers is defined as the difference of the specific volume and the volume

which is not available for the particular molecular motion, which is responsible for the process that is

considered. Relations between free volume and viscosity, free volume and diffusion coefficient are pre-

sented both in the case of simple low molecular weight liquids and in the case of polymers. Molecular

models and free volume models are reminded starting from the equilibrium state equation of Simha and

Somcynski. The non equilibrium situations of specific volume of glass polymers below T, are shown

introducing different relaxation volume equations, which involve different material’s parameters and con-

cept of the fictitious temperature. The diffusivity equations of Vrentas and Duda are introduced both for

the glassy and rubbery states. The possibility of introducing time relaxation functions is also suggested.

The importance of finding experimental evidences of the free volume is stressed. Highlights of the free

volume measurement methods are given, in particular as to dilatometry, photocromy, fluorescence, electron

spin resonance, small angle X-ray scattering, positron annihilation spectroscopy.

1. Free Volume Definition

The specific free volume (for unit mass) Vi can
be defined as the difference between the specific
volume (% = V) and the “occupied” volume Vy
which is the characteristic volume (or co-volume)
of the atoms or molecules, making up the materi-
als, in the unit mass!

Vi = V-V, (1)

V, is the volume not available for the molecular
motion, which characterizes the process under
investigation. However the question of what to use

for the magnitude of Vo is quite a difficult one.
Doolittle {1] for example suggested three possible
definition of Vo
i) V, is calculated from the van der Waals
atomic dimensions [2]

i1) V, is the crystalline volume at 0° K

i) Vo is the volume of the liquid extrapolated,
without change of phase, to 0° K [3]

Other definitions involve the volume swept - out
by the gravity center of the molecules during
thermal motions. It is important to remark that Vi
allows the motions of polymeric groups and seg-
ments inside the material.

V1 rules therefore the rigidity and the mechanical
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properties of polymers and also the penetrant dif-
fusion coefficients, which are fundamental for the
study of transport properties.

The transition from rubberlike (liquid) to glassy
state of amorphous polymers is paralleled by
marked changes in viscosity, specific heat, thermal
expansion coefficient, elastic modulus, within a
narrow temperature interval, centered about the so
called glass transition temperature (Tg). According
to Fox and Flory [45] this transition is not a
thermodynamic phase change, but is due to the
decrease of the free volume of the amorphous
phase below some small characteristic value that
does not allow the free movements of polymeric
chains inside the material.

The evaluation of free volume below Ty is even
nowadays subject of argument. In past times a
critical discussion was presented by Boyer [6] with
reference to the free volume at Tg. The results can
be summarized in Fig. 1, where specific volume is
plotted versus absolute temperature. Suggestions
according to point iii) foresee the reaching at T=0
K° of a specific occupied volume Vo=Vo. (no
further compressible) obtained with a liquid like
behavior during the cooling.

The free volume fraction at any temperature

should be (with reference to Vor)

f= (Vi-Vou)/ Vo= a0 T

at Ty it should be f; = T

According to Boyer [6] this value should be
equal to 0,16; however his proposal is not experi-
mentally acceptable. Another proposal [7] is that,
by cooling down to 0° K, the system volume goes
reversibility down to VoL and comes back on in-
creasing temperature, as if the system’s behavior
were glassy, that is following a straight line
having a slope a@¢Vo. (Fig. 1, line b). In this case
it is easy to show that the free volume should be
at any T< Ty, f=(4 a)*T. At Tg it should be fz=
(4 a)*T,, where 4 a=a1- @, Following this pro-
cedure, f, was estimated on the basis of experi-
mental data to be 0,113 for most polymers [6].
However by plotting versus 1/Tg a linear behavior
could roughly be observed, but with a large scatter

To Temperature T

Fig. 1. Specific free volume vs. temperature accord-
ing to Boyer [6].

of data.

Williams, Landel and Ferry [8] proposed a
semiempirical equation relating f and T on the
basis of the viscosity behavior of many amorphous
polymers (see later), which is generally accepted
above T, The WLF point of view supposes
however that the free volume fraction is a constant
below T, and equal to 0,025 for most polymers.
This is a rough approximation indeed either indi-
cated by Ferry (9] or found by many experimental
evidences, such as mechanical dynamic tests.

What do we think about Vo? Vo should be
recognized as the specific volume of the polymer
inaccessible to the particular molecular motion that
is interested by the considered mass transport
mechanism. With this definition it is possible to
cover, for example, viscous motions above Ty [f=
fotar AT with fy = 0.025], viscoelastic transitions
below T, where mechanical dynamical transitions
B, 7, & can happen only if free volumes is higher
than the size of the vibrating groups. As to dif-
fusivity in membranes the choice of Vo is not easy
to be defined mainly in the glassy state. We found
by PAL that holes can exist much larger than the
dimensions of the permeating gas: however in any
case certain selectivity exists. We think that this
behavior can be interpreted according to the
solution-diffusion mechanism, considering a flux
partition in series and parallel of the permeant so
that the maximum resistance to the permeant is
due to the membrane fraction, which is compact.

Korean Membrane J. Vol. 1, No. 1, 1999
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1.2. Free Volume in not Polymeric Sub-
stances
We start considering the studies of free volume
in the case of small molecules. This is useful for
basic considerations.

1.2.1. Free Volume and Viscosity

Is well known experimentally that both viscosity
and specific volume V of liquids change with
temperature and pressure [10]. Equation (1) shows
that variations of specific volume and of free
volume are of the same entity because the volume
variation 4Vy is usually small: 4V=A4V-4V,.

Therefore density and viscosity, which depend
on the molecular inter distance should be related to
the free volume.

Doolittle {3] found this correspondence on the
basis of experimental data in the case of hydro-
carbon liquids, by using the empirical relation:

1 =Aexp(—b&) @)
7 Vi

where the free volume per molecule vi=v-vg is the
difference between the average volume per mole-
cule and its van der Waals volume.

1.2.2. Diffusion Coefficient, Viscosity and
Free Volume

Both viscosity and diffusion coefficient D were

found related, also theoretically, in the case of
simple liquid systems.

kT 1
37120 7’
(where ap is the equivalent diameter of the mole-

Stokes Einstein [11] equationn D=

cule) gives the self-diffusion coefficient in a liquid
made by simple spherical molecules. D is directly
related to fluidity (1/7).

Cohen and Turnbull [12] considered that mole-
cular transport occurs in molecularly simple liquids
by motions of molecules, envisioned as uniform
hard spheres of volume v*, into voids characterized
by a size equal or larger than the critical value v*.
Each molecule (hard sphere) resides in a cage
(volume v) bound by their neighbors. Fluctuation
in density opens a hole, within a cage, large enough
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(v=v#*) to allow the displacement of the molecule
contained by it. Diffusion is verified when another
molecule jumps into the hole left by the preceding
molecule. Voids are simply formed by redistribu-
tion of the mean free volume. No energy is re-
quired for redistribution. The expression of the
diffusion coefficient is expressed [12] by:

D=Aexp<—JU’”-) (3
f
where vi = v-v*, and 7 is a numerical factor
needed to correct for the overlap of free volume

\4
(%S y <1); vf=wf is the mean free volume

per molecule; factor A (A=g*a*u) is the product of
a geometrical factor (g), the molecular diameter
(approximately a), the gas kinetic velocity (u). D
depends on temperature through u and through v
and depends on pressure through ve.

Equation 3) has the form found empirically by
Doolittle (eq. 2) for the fluidity % of low molecular
weight liquids.

1.3. Free Volume in Polymers

Williams Landel and Ferry [8] extended the
Doolittle equation valid for simple liquids to poly-
mers, proposing:

7= rE=Aexp<+

< |tw

) )

where f= Vi/V, is the free volume fraction; with
reference to the specific volume at Ty, A and B are
constants; z is the polymer relaxation time, E is
the elastic modulus. The dependence of 7 on
entanglements can reasonably be considered a
structural factor included in A.

They propose for the free volume the expression
(at constant pressure):

vV
Ve

f=—L =f,+a(T—T,) 5)

which satisfies the experimental behavior of the
amorphous polymers. Vg is the volume at the Ty ;
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a=ai-ag is the difference between the thermal
expansion coefficients of the rubber (liquid) and of
the glass: f; is the free volume fraction at Tg

It is noteworthy to observe that W.L.F. formula
relates the free volume to the relaxation time of
the glass transition multiplied by the glass elastic
modulus and therefore to the viscoelastic properties
of the (amorphous) polymers. The reference tem-
perature is the Tg the W.L.F. equation can be
used with confidence above the T, Notwithstand-
ing this formula is semiempirical, it is very much
used because it corresponds to the real behavior of
most of the amorphous polymers above Ty W.LF.
assume at Ty and at lower temperatures that fg=
0.025 for amorphous polymers. If one substitutes
eq. (5) into eq. (4) and applies the latter at the
temperatures T and Tg, from the ratio between the
two equations one obtains :

e enfs(b ]
g

Mg T t
1 _ ‘_Cl(T_Tg)
08 A= T CAT-T ,)

where Ci=B/(2.3 f,) and Co=fy/ a1

The theoretical studies on diffusion, done using
models of low molecular weight molecules assimi-
lated to hard spheres, can be extended to systems
made by macromolecules and by small amounts of
small penetrant molecules mobile in the polymers,
taking in consideration that their diffusion process
is governed by the segmental motion of the poly-
mer chains which opens the space needed for the
diffusion jumps. Therefore it is justifiable to apply
the resuits of studies concerning polymer segmental
mobility (e.g. viscosity temperature relations) to
the study of diffusion of small molecules in poly-
mers.

This observation justifies the Fujita [13,14] ex-
pression of the mobility mg of the diffusant rela-
tive to the polymer: mg= A4 exp<~§fl). Ad
and By are assumed independent of concentration
and temperature. The thermodynamic diffusion
coefficient is given by:

D. = RT ma = RTAq exp (-Bo/f) (7

The free volume fraction f is assumed as an
additive function of the diffusant volume fraction
@ and of temperature, that is:

f(T, ®)=f (T, O+7(T)*® where T is the
temperature, ® is the volume concentration of the
penetrant, and 7 is a factor which takes in consi-
deration the swelling due to the interaction dif-
fusant-polymer. This equation describes satisfac-
torily the concentration and temperature dependence
of D, for a number of polymers and organic pe-
netrants above Tg, at atmospheric pressure and at
a relatively low concentration (®<0.15). [15]

In the particular case ®=0, equations (7) and (5)
describe the diffusivity in pure polymers. In case
pressure P is a variable we get:

f((TP) = f; +ar (T-Ty-B(P-Ps) (8)

where fs is the free volume fraction in the re-
ference conditions (generally Ts=Tyg, Ps=1 atm); e
is the thermal dilatation coefficient of the free
volume. B is the compressibility factor. Fujita
equation is satisfactorily applicable when applied to
large organic molecules in amorphous polymers but
not when applied to small molecules as water in
polar polymers. We found in the case of amor-
phous polyurethanes that eq. (7) can be used
satisfactorily with different polymers and for low
MW gases rather insoluble in the polymers: in this
case equation (8) can be used above Ty to get the
free volume fraction.

1.3.1. Diffusion Interpretation

Diffusion models are very important to study one
of the main factors influencing permeability, that is
diffusivity. The other one is solubility. Models of
diffusion can be divided in two main classes:
molecular models and free volume models. The
first ones stress the importance of the detailed
microscopic specific interaction polymer-penetrant
and the change in the matrix due to this interac-
tion. For each jump of length A moving a given
molecule of a section area o° in a polymer an
energy must be given. For example as suggested

Korean Membrane J. Vol. 1, No. 1, 1999



12 G. Consolati, M. Pegoraro, and L. Zanderighi

by Meares [16] Ep=0?+A - CED, where CED is
the cohesive energy density and Ep is the
activation energy for diffusion. The hole of volume
o ’A must be created (but it is recovered when the
hole is closed after the jump). The energy of
activation was found to increase linearly with the
penetrant volume in a copolymer polyvinylchloride-
vinyl acetate in the range from 7 to 17 kcal/mole
corresponding to Hz and CO; permeation [17]. By
using the Meares equation however, too high
values of jump distance are obtained (e.g. MCOg) =
84A). In the reality the jump length should be
controlled by the segment mobility of the polymer,
which depends from the rigidity factor Ce of the
chain [18]. However in the rigid system bisphenol
A-polycarbonate the activation energy is low and
changes only from 5 to 8 kcal/mol when using
respectively N2 and CO: as penetrants.

Other remarkable molecular models are that due
to Di Benedetto and Paul [19] and that due to
Brandt [20].

The diffusion activation energy is postulated to
be the energy needed for causing a volume incre-
ment of the hole to reach the volume needed to
allow the passage of the molecule. One of the most
interesting molecular model is the Pace and Daty-
ner model [21] which incorporates features of
references [19] and [20]. The transition through the
Tg is supposed to increase only the hole dimens-
ions but not the number of cavities.

1.3.2. Free Volume Modeling

Free volume models are based on phenomenol-
ogical equations [22]. On the basis of the specific
volume behavior of polymeric amorphous materials
versus temperature and of their mechanical pro-
perties (pioneered by Kovacs [23] and Struik [24])
it is possible to say that at T>T; the equilibrium
state, in terms of PVT variables, is easily and pro-
mptly reached, while at T<T, the physical vari-
ables of the polymers are function of time; Ty itself
is a function of time.

Fig. 2 illustrates the previous considerations: for
T<Tg the specific equilibrium volume V is lower
than the experimental volume determined on la-
boratory short time scale. By leaving the sample
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Volume

Temperature Tg

Fig. 2. Specific volume of amorphous polymer vs.
T,.

for a long time the experimental volume decreases
going towards the equilibrium value.

Various attempts were done to express the
specific volume and the free volume at equilibrium
as a function of temperature and pressure.

A very good equation of state for polymers was
proposed by Simha and Somcymsky [25]. They
applied the statistical mechanical theory on a cell
model in the solid-like approximation. P. Flory
[26], Sanchez and Lacombe [27], Di Benedetto and
Paul [19] also proposed other eguations of state.

The Simha-Somcynsky state equation which is
valid both above and below Tg is:

]

+ —%[2, 002(y V) 4~ 2.409(y V) %]
(9)

-1

ol

%: [1-y(Vay¥) -

V P T are the reduced variables.

P* V' T" are the characteristic scaling parameters
for each polymeric material: they are usually
deduced by fitting P, V, T data; y is the fractional
occupancy of the cells: y=v,/v.

The fractional free volume is f=(v-v,)/v=1-y; f
is the excess free volume fraction., and v is the
volume per segment of the polymer.

Since at equilibrium free energy F is minimum,
by minimizing the free energy another independent



Free Volume in Polymers. Note I°: Theoretical Background 13

014 L ) : . ;

0.12 4 '
E
5 010 r
)
>

] Liquid -

g 0.08 q
& Glass

0.06 r
®
c
2 004 r
=
Q
o
=
w0024 -

0.00 T T T T T

0 50 100 150 200 250

Temperature, °C

Fig. 3. Free volume for polystyrene at 1 bar
pressure computed according to Simha-
Somcynsky [22]. The free volume has
been computed for both liquid state
(above 373 K) and for the glassy state.
Note that the free volume of the glass is
not independent of temperature.

equation involving the variables y, V, is obtained
[28} that is:

(%’3) =0 (10)

For given values of P and T the two previous
equations can be solved for y and V.

The solution procedure is reported in Fortran
language [28].

Simha has shown that for polymers not far
away from equilibrium the previous procedure
gives an approximate value for y not far from the
true value [29].

For system not at equilibrium equation (10) does
not hold; in this case a good approximate value of
y can be obtained from equation (9) provided
experimental values of V at constant P are used.

For quenched glasses as a first approximation it
is possible to calculate V approximately by using
the following equation:

V=V [l+a (T—T ]

where a is the thermal expansion coefficient for

20

Relative Probability

T v Y ey
0.00 0.05 0.10 0.15

Fractlonal Free Volume

Fig. 4. Distribution curves of free volume ev-
aluated according to Simha at different
temperature [22].

polymer glassy state (Fig. 2).

Fig. 3 shows [28] the free volume fraction at 1
bar of polystyrene (PS) both in the liquid and the
glassy state evaluated from Simhas’' model. Ac-
cording to this model, but also with the experi—
mental data, the free volume of the glassy state
depends on temperature. This is better than the
assumption of the W.LF theory of free volume,
which considers the free volume as constant below
the glassy state. Simha equation can also be used
to calculate the thermal fluctuations of the mean
free volume at different temperatures (Fig. 4).

2. Non Equilibrium Processes in
Polymers

State equations cannot be used in studying the
evolution of free volume with time! they can be
used indeed only to obtain the equilibrium values
(or o time limit values).

A priori molecular dynamic calculations of the
kinetics of a given physical processes evolution (as
. volume-time, enthalpy-time and so on) are not
presently available.

Free volume time evolution can be used semi-
empirically to compute the kinetic of a process, by
relating free volume variation and relaxation rate
of the studied property (e. g. viscosity or elastic

Korean Membrane ]. Vol. 1, No. 1, 1999
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modulus or even diffusivity).

Relaxation time is related to viscosity, specific
volume and free volume changes.

Kovacs first [30] has found that after cooling a
polymer from T.>Tg to Ti<T, the isothermal
volume v contraction with time t can be followed
according to the following empirical relation:

v=1{[log (t)]

Different isotherms can be shifted and superposed
simply by abscissa translation; the shift factor ar
is essentially the same as that deduced from
viscoelastic studies that relate elastic modulus with
time at different T [31]. This suggests that similar
molecular processes are involved both in stress
relaxation and in isothermal volume contraction of
glasses.

The relaxation rate (or reciprocal of the re-
laxation time) for viscoelastic measurements can
be written, according to W.L.F., equation (6) as:

1 -1 T-T,
T =174 exp 2'3C1—C2+(T—Tg) (1D

where C; and Cs are universal constants for all
amorphous polymers.

Since the Simha free volume f changes practi—
cally linearly with temperature (see Fig. 3), T-T,
in the previous equation may be replaced by f-f; a
good approximation [32] is:

T-T g=f~"f—f-iT‘

where f* is the reference free volume at T*. The
straight-line slope of f[T] (Fig. 3) is assumed as
f*/Tx.

The preceding equation (11) after simple re-
placement, becomes:

()] '=r'exp|2.3C, Ef_fg)

Comr +(E~1 )
This equation is a general relationship between
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relaxation rate of viscoelastic properties and other
related properties and free volume; it is assumed to
relate average relaxation time and average free
volume, some authors say irrespectively of whether
or not the material is in equilibrium. In the study
of glassy polymers it is important to find a model
describing how free volume changes with time.
Non-exponentiality (because of relaxation time
distribution) and non-linearity with time charac-
terize the glass transition kinetic. Kovacs multi-
parameter model [33] was the first to be proposed:
it is non-linear and non-exponential, but other
models are often used today. For example Moynihan
[34] model is phenomenological and expresses the
volume variation with time according to:

st =g g = e[ [ L]

17y
(12)

This function is said relaxation function and
describes well the behavior of volume after a
sudden step in temperature. Index 1 is referred to
the beginning of the relaxation; 7o is the relaxation
time and depends on the activation energy 4h
needed for the mobility of the polymer segments:

7, = Aexp f{%h +-a ngf)Ah (13)

The coefficient 8 depends on the distribution of
To X 18 the fraction of the activation energy
depending on T and (1-x) is the activation energy
fraction depending on structure.

The fictitious temperature Ty, which appears in
equation (13) represents structure (due to chain
conformation), and it is determined by solving the
integer differential equation:

To V-V ,) (T sV.—-V,
f T T dT = Tt ST T
where V. is the volume at equilibrium.
One starts from the experimental data ¢ (t)
(eq. 12) and using equation (11) and (13), one finds
by optimization [35] the parameters x, 4h, A. The
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Fig. 5. Evaluation of glassy polymer structure
evolution during aging by means of the
fictitious temperature T

product (1-x) 4h is a direct measure of the
physical structural aging [33].

T: is the temperature (see Fig. 5) which descri-
bes the evolution of the polymer structure during
aging. For example cooling down an amorphous
polymer from T, to T), volume changes, passing
through point A, B (Ty) and C where cooling stops
and relaxation begins at time ti, and goes on in a
isothermal way (at T)). At time t the relaxation
function ¢ has a certain experimental value while
the instantaneous volume V (t) is, e.g., at point D.
Vp is the same which should be generated by an
hypothetical (fictitious) cooling down through the
way A, B, D’. D’ is the last point along this way
characterized by equilibrium conditions: its abscissa
is Te. T is changing from T; to Ti during the
isothermal volume variation (from C to E). In
conclusion Tr describes univocally the fictitious
equilibrium state of the glass, while relaxation time
goes on.

Vp must be measured experimentally. However
as a first approximation due to the rapid cooling in
the range Ty-Th, the volume Vp can be calculated
simply by equation:

A\ DZV D'[l_ag(T g—Tl)]

where the relaxation effects have been omitted.
When Vi is known the state equation of Simha
Somcynski can be used to calculate any Vp values
and the corresponding occupancy y and the cor-
responding excess free volume f=(1-y).

3. Diffusion and Free Volume

Vrentas and Dudas proposed a complex formula-
tion of the free volume theory based on Cohen and
Turnbul and Fujita models, completed with the
relation between the mutual diffusion coefficients
and the friction coefficient and with the Flory ther-
modynamic and the Bueche entanglement theory
[36]. Duda’s theory gives an overall global per-
spective and describes diffusion both above and
below T, through the presumption that transport is
controlled by the availability of free volume within
the system.

In this presentation other models, such for in-
stance those based on statistical mechanics and
which give a local perspective as the Pace and
Datyner model [21], will not be considered.

3.1. Above Tg¢
Wrentas and Duda proposed for the self diffusion
coefficient of the penetrant the following expression:

— A0, Vi+ 0, V38

FH

D;=Dgexp 14)

where! 7 is a numerical factor (between 0.5 and 1)
that has been introduced to account for the over-
lapping among neighboring free volume elements
(i.e. volume shared by neighboring molecules) ; w)
and w- are the weight fractions of the penetrant
and polymer respectively; V' and V" are the
minimum specific free volume needed for a dif-
fusive jump of the penetrant (component 1) and of
the polymer (component 2); &=V'1/V'; is the ratio
between the critical molar free volume required for
a jumping unit of the two species: the penetrant
(1) and polymer units (2); Viy is the free volume
per gram of all individual jumping units in the
solution. The number of parameters needed for
calculations of Dy is very high (it is ten after
grouping).

At the limit of a trace amount of penetrant, after
some transformations, one obtains:

—2.303C,C
D, =Dy exp m:f% (19

Korean Membrane J. Vol. 1, No. 1, 1999
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Fig. 6. Diffusion coefficient of various gases in
PVDC amorphous polymer at 298K as a
function of gas permeant diameter accord-
ing to Vrentas and Duda.

where C; and C. are the universal constant of the
W.LF. equation; Doy and & are in this case the only
two adjustable parameters. Equation (14) is inde-
pendent from time because the system is, above
Ty, always in equilibrium. Fig. 6 shows the diffusion
coefficients, calculated according to equation (15),
of various gases, having different diameters, in
completely amorphous PVDC at 298° K: parameter
& is an indicator of the size of the penetrant
because V' is similar for all the polymers.

3.2. Below Tq

The glassy state is a non-equilibrium state. As
amorphous rubberlike polymers are cooled down
and pass through Ty polymer segments do not
maintain sufficient mobility to reach equilibrium
within the ordinary time scale. An extra free
volume is generated which is continuously reduced
over time until the minimum energy is reached.
Duda assumes that diffusivity is again expressed
by eq (14), but correcting the available free volume
with a factor Q (eq. 16) which accounts for the
concentration dependence of the penetrant, and
with the substitution of Vpy with the term V¥
(which specifies the glassy state and is the hole
free volume of the mixture). Therefore:

Vin=o Vrm+ o Vi

The term V%o is the sum of the excess free
volume V™ of the polymer and of the free
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volume at the equilibrium Vemz. The excess free
volume is expressed by:

Be=Va,—a XT-T,)

where V% is the specific volume of the equili-
brium polymer at Ty, while (ag-a,) is the dif-
ference between the polymer thermal expansion
coefficients of the glass and rubberlike states, the
first one in the real (not equilibrium) conditions,
the second one at the equilibrium because rubber
state equilibrium is easily reached, due to the high
mobility of the segments. Introducing in  V%w the
contributes due to Veuz and  Vpy, the Vrentas
Duda equation becomes:

D;= Dpexp
— Aoy i+ g V)
(01 Vem+ @y Vi) +w; Vi(a g—a NT—T,)
(16)

This expression introduces two more parameters

Q

(Q and V) which can be estimated, in our
opinion, only by optimization: in the reality these
parameters are function of the relaxation time of
the compaction process and of the time of aging.
Until now only a few not systematic studies were
done on diffusivity or permeability dependence on
aging time of glassy polymer so no conclusion can
be given about the predictive power of the Vrentas
and Duda equation, which, at this time, appears
one of the most complete diffusivity approaches.
Numerous studies on the contrary were done on
other properties, such as specific heat [35] and
compliance [23,24]. Only numerical calculations [37]
and rigorous experiments will allow to verify the
models of diffusivity.

We believe that a connection could be done with
aging time introducing in (16) the relaxation func-
tion:

s VD= Va(=0) Zexp[_(fofﬂ)ﬁ]

Vo, — Va(t=0) T

where ¢ is the relaxation time and 8 is a factor, which
takes account for the relaxation time distribution.
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This suggestion could give some help for intro-
ducing the relaxation effects also in the diffusivity
studies.

Duda's model, even in its simplified form which
does not consider time dependency, differs from
the well known dual mode theory of gas sorption
and transport (Barrer, Vieth [38]), based on the
existence of two distinct solute populations within
the polymer, one dissolved according to the Henry
solution mechanism, the other one residing in pre-
existing voids in the glassy polymer. The solubility
of the sorbed molecules is given (cc STP/ cc
polymer) by:

C= k,P+Cuyis

where C'y is the saturation limit, b is the hole
affinity constant (atm ") ka is the Henry dissolution
constant (cc STP/ cc polymer atm). Paul has
developed [39] an expression for the time lag based
on the dual sorption model.

2
0L=61—D[1+Rf(y)] am

where 1=thickness, R=C'y b/kq, y=bP;.

P: is the upstream pressure; (downstream pres-
sure P2=0)

The expression of f(y) is :

Ay =6y700.55+ y— (1 + ) In(1 + )]

f(0)=1; f(o0)=0.

Calculation of 81, can be done by measuring the
slope of Q, the permeate volume under steady
state, versus time at different pressures. C'y, b and
kq are calculated from equilibrium sorption data.
The diffusion coefficient can be calculated accord-
ing to equation (17).

4. Other Considerations on Free
Volume

Some author defines the f.v. as not localized:

mobile holes should exist inside the condensed
matter: viscosity of liquids is well interpreted by
this model.

For an amorphous polymer Kaelbe's [40] defini-
tion is an “interstitial free volume” or a free volume
uniformly distributed inside the polymer, not useful
for molecular transport, and a “hole free volume”
or a discontinuous distribution of f.v. which con-
sists of holes in the polymer: only this fv. seems
to be involved in the molecular transport. Bueche
[41] suggested that the number of holes in a
polymer is a constant, at constant temperature and
pressure, and moreover that their position changes
with time, owing to the anharmonic oscillation of
polymer chains; that is, the holes can move freely
inside the bulk polymer as no energy changes are
required for their redistribution.

When a hole opens near a molecule of a pene-
trating gas, and is as large as, or larger than, the
molecule, this may move into the new hole. How-
ever a molecule may move into a hole of smaller
size if it has a sufficient energy to distort the
polymer segments, enlarging the hole to its own
volume.

In the first case, the diffusion process should be
determined only by the probabilities that a hole of
sufficient dimension opens next to the diffusant
molecule and that the molecule moves in the
direction of the hole. In the second case, there is a
further consideration: whether the molecule has a
sufficient energy to enlarge the hole to its own
volume.

The previous analysis allows one to say that a
diffusion model in a polymer, based on the f.v. hole
model, must consider the energy distribution func-
tion of the penetrating molecules and the distribu-
tion function of hole volumes in the polymer.
Moreover the question of the shape of the holes is
still unsolved. All the theoretical models assume
spherical holes with unimodal distribution. Actually,
there are several possibilities: are the holes, par-
ticularly in glassy polymers, isolated or intercon-
nected with a system of channels, like the cages in
zeolites? To what extent is the spherical model
effective in describing the shape of the holes? And
basically do the holes have a physical reality?
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As mentioned above, William, Landel, and Ferry
[8] proposed their well-known W.L.F. equation for
the evaluation of the f.v. fraction for polymers in a
rubber state, that is, at a temperature higher than
that of glass transition. Their approach cannot be
used to demonstrate hole existence. It is based on
the difference between the expansion coefficient of
the polymer in the rubber and in the glassy state.
Simha-Somcynsky [25] developed a f.v. theory
based on the lattice—cell model. They proposed an
equation of state for the polymers and evaluated
the “fractional free volume” as ‘“excess free
volume” and determined the mean f.v. in polymers.
Litt [42] defined the f.v. in polymers above Ty on
the basis of “passive motion”, “activation”, and
“activated diffusion”. He proposed an equation of
state for rubbery polymers that can be used to
obtain the gaseous diffusion coefficient in a
polymer, in terms of molecular diameter of the
permeating gas and of the polymer microscopic
bulk modulus. From the correlation of the self-
diffusion coefficient, Litt estimated the values of
the mean effective size of the holes in polyethylene
and poly (vinyl acetate) for different penetrants. It
is important at this moment to try to describe the
physical existence of the “holes”, their size and
their distribution by experimental technigues.

As far as the direct experimental determination
of the free volume is concerned positron annihila-
tion spectroscopy (PAS) is a relatively simple
experimental technique that has given results
consistent with theoretical evaluation (see cages in
zeolites). Since the 1980s, PAS has been proposed
as a suit-able technique for the investigation of the
f.v. hole size and hole volume distribution in

polymeric materials [43].

5. Highlight of the Free Volume Ex-
perimental Techniques

Many, and quite different, techniques have been
proposed to estimate the free volume of polymers.
Indeed one can measure the total free volume, the
cage volume, and the distribution function of the
cage volume.
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Each technique investigates specific properties of
the matter such for instance the density variation
with temperature, the mobility of probe molecules
introduced or bound to the polymers, the
stimulated rotational motion of probe molecules, the
density distribution function of electrons, the life
time of positron, etc. The techniques are comple-
mentary in every respect.

5.1. Dilatometric Technigue

The specific volume of polymers changes vs.
temperature. This change is different either the
polymer is in an equilibrium state, liquid or rub-
bery state, or in a quasi equilibrium solid state
(glassy state). At the glass transition temperature
there is no change in volume but only an abrupt
(discontinuous) change of the slope of the volume
vs. temperature. This change in slope is strictly
bounded to the free volume variation owing to
glass transition. (Fig. 1).

The apparatus that studies the dimensional
change of a sample is the dilatometer. [44]

There are two basic types of dilatometers: linear
dilatometers, used when it may be assumed that
the shape of the test sample remains unchanged,
such as rigid solids, glassy or semicristalline poly-
mers etc., and volume dilatometers, used without
limitation.

It is possible to measure linear thermal expan-
sion coefficient of the order of 10 (K'"); the ac-
curacy of volumetric dilatometers is 3% 10 * ml*/g.

With this techniques it is possible to determine
the total free volume and its variation with tem-
perature if the occupied volume is known (equation
1).

5.2. Photocromic Technigue

It is based on the reversible photochemically
induced trans-cis isomerization of a chromophore
present in a molecule used as label or probe. The
trans and cis species have different absorption
spectra and the change may be observed by UV-
Vis spectroscopy. The absorption of the light over
a range of wavelengths induces in the chromo-
phore a trans—cis isomerization only if there is in
the ambient where the chromophore is situated a
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Table 1. Photocromic Probes, Appropriate Wavelength

I

4, and Estimated Isomerization Volume

Probe name Symbol A (nm) trans. vol. (A" isomer. vol. (A%
azobenzene AZB 320 144 127
p-azotoluene PAZT 336 170 193
stilbene SB 311 151 224
4,4"-dinitrostilbene DNS 358 187 285
4,4"-diphenylazobenzene DPA 362 356
4,4"-diphenylstilbene DPS 340 270 575

sufficient free volume, and critical volume, which
allows the isomerisation. So there is a strictly
relation between the size of the chomophore and
the volume cage inside the polymer. The most com-
monly used photochromic molecules are azobenzene
derivatives [45-47).

By using photochromic molecule of different
sizes, it is possible to estimate the distribution of
free volume fraction in glassy polvmers.

The fraction of cis isomer present at the photos-
tationary state, Y, is related to the absorbance A,
at an appropriate wavelength A (see Table I), and
to the molar absorptivity &as and € gans at the
same wavelength by the equation:

_ 1-A/A trans
Y= 1—e cis/e trans

Auans 18 the initial absorbance before irradiation.

If Ys and Yr are the extent of isomerization at
photostationary state in the model solvent and in
the polvmer material, respectively, then the fraction
of local free volume in polvmer material, ®, large
enough for isomerizing the probe can be defined
as:

P = YF/ Ys

This implies that the difference between solvent
and polymer in isomerizing ability is due to the
local free-volume restriction present in the poly-
mer.

The methods for calculating the volume required
by probe for isomerizing have been presented in
[48). 1t has to be pointed out the evaluation of this
volume is one of the critical point of the method.

The volume required for probe isomerization is the
hard volume calculated according to van der Waals
radii, as tabulated by Bondi [49] or other authors,
plus an extra volume needed for the rotation.
Indeed the volume required for isomerization
consists of two components: the volume twist and
the volume swept by the van der Waals area of
the molecule; a good approximation for the extra
volume evaluation is to sum this two contribution
even if there is probably some overlap.

With this technique it is possible to determine
the local free volume fraction and, by using probes
with different volume, the cumulative distribution
of local free volume fractions.

5.3. Fluorescent Spectroscopic Techni-
Que

This technique uses, as probe, a suitable fluores-
cent molecule which on absorbing light is excited
from its ground state to an high energy state. Two
pathways are available to the probe for releasing
the adsorbed energy and to return to its ground
state:

a) A thermal, or non-radiative, mechanism in
which the excess energy is redistributed to
various degrees of freedom of the molecules
and from this to the near neighboring mole-
cules,

b} A radiative mechanism involving photon
emission and fluorescence.

If the probe has no degree of freedom since
rotational motion is hindered by a lack of mole-
cular mobility, the thermal pathway is not allowed
and therefore the radiant mechanism becomes
dominant.

Loutfy [50] for the first time observed a sharp
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rise in the fluorescence as viscosity increases
during the polymerization of PMMA: the fluore-
scence of the probes ([p-(N,N-dialkylammine)
benzylidene]malonitriles) increases gradually (1.5
times) as the conversion increases to 60%; a fur-
ther increase in conversion causes a sharp increase
in fluorescence (20-40 times) A sudden increase in
the fluorescence occurs when the polymerized mo—
nomer approaches to the glassy state. Since during
this process there is a strong increase in the
viscosity and therefore a reduction in the total free
volume and in the size of the free volume holes, a
decrease in molecular mobility has to be expected
and consequently an increase of the fluorescence.

For the intensity I of the emitted fluorescence
radiation holds the following relation:

EKI°PC €&

K is a proportionality constant; I° the intensity
of the incident beam; C the concentration of the
probe in the sample; € the molar absorption coef-
ficient; & the quantum yield.

Usually in a sample both the thermal and radia-
tive mechanism occurs with different rates. Let kr
and knr the radiative and non-radiative decay rate
constants, respectively. The fluorescence yield, «w,
may be defined as:

K F:kr/(kr+knr)

The fluorescence yield approaches unity in rigid
system, such as polymer at low temperature. The
radiative rate constant, kr, may be calculated from
the integration of the absorption spectra; moreover
this value is related to /I°

The non radiative decay rate, ko, may be ev-
aluated from the previous equation:

knr:kr (1/k}7‘1) (18)

The importance of free volume vr and free
volume cage v in molecular relaxation processes
of excited probe is well known. Therefore it is
possible to relate kn to the hindered rotation mo-
vements and excited state conformation to the free
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hole volume by the following relation:

Kar=Knr” eXp(' v O/b Vi) (19)

where kn° is the intrinsic rate of molecular re-
laxation; v° the van der Waals volume of the
probe; b is a scale constant to change the van der
Waals volume to the effective volume needed by
the probe to perform internal movements. From
equation (18) and (19) one gets:

o

kr k, by ¢
1-kr kﬁrexp( )
Loutfy plotted log(ks) vs. 1/vi for a mixture
polymer/monomer (polymethylmethacrilate (PMMA)/
methylmethacrilate (MMA)) and obtained a good
linear relationship. The free volume vi was obtained
according to the general expression of Bueche [51].
For certain aspects this technique can be consi-
dered similar to photocromic technique and gives
similar results. Different studies on physical aging
associated with free volume change with aging
time were done in case of many glassy polymers
[52].

5.4. Electron Spin Resonance Spectro-
scopy (ESR)

ESR, also known as electron paramagnetic re-
sonance (EPR) spectroscopy, studies the spin re-
sonance of unpaired electrons present in organic or
inorganic free radicals. The resonance condition of
an unpaired electron in an ESR experiment is:

4E = hy =gBB

Where 4E is the separation of the spin resonant
energy levels produced by the application of the
external magnetic field B, # is the Bohr magneton
and g is called nuclear factor. Most of ESR operate
at a fixed frequency and record an ESR spectrum
by sweeping the external field B.

The interaction of the external magnetic field
with the magnetic field arising from nuclei with a
magnetic spin gives rise to a local magnetic field
Bie which splits the individual resonance lines into
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their components, according to an hyperfine coupl-
ing constant a (G). Therefore instead of a single
line the spectrum shows two or more lines (2 +1
lines where I is the nuclei spin) each one separated
by the coupling constant a and centered on the
field determined by g.

Crystalline or molecular solids are structurally
anisotropic systems therefore also the local magnetic
field is anisotropic and hence the g—factor depends
on the orientation of the sample relative to the
direction of B.

The hyperfine structure of an ESR spectrum is a
kind of fingerprint of a radical and its environment
since the splitting depends on the magnetic nuclei
present in the vicinities.

Radical molecules added, as label or probe, to
polymer solids and melts behave as a sensor of the
local motion of polymer segments. By means of
ESR technique it is possible to study the molecular
relaxation, in the frequency range 10 510" Hz
and to get information, from the movement free-
doms of labels or probes, on molecular dynamics
and microstructure of polymers.

Even if any kind of stable radical may be used
as label or probe, the complexity of time-dependent
contributions to linewidths of ESR spectra makes
unpractical the use of most radicals and only the
nitroxide have been employed widely and success-
fully for their extraordinary stability, the solubility
in polar and non polar media, the wide diversity of
molecular structure. The nitroxide radicals may be
covalently bonded, as label, to polymer chains or
dispersed into the polymer matrix, as a probe. Ni-
troxide free radicals give rise to an easily iden-
tifiable three line pattern and they have a rotational
correlation time (7 g) in the range 10°-10" (s).
Really the development of ESR technique based on
labels or probes is strictly bounded to the use of
nitroxides.

The analysis of the ESR spectra of label or
probe samples give information on their rotatory
and translatory mobilities, and from this motional
freedoms it is possible to get information on their
environment and microstructure of the polymer.
[53-59]

5.5. Small Angle-X Ray Scattering (SAXS)

An incident X-ray beam at very small angles,
typically less than 2°, is scattered by the electron
“clouds” surrounding the atoms in the matter. This
scattering occurs with a wavelength of CuK of
1.542 A. That scattering is due to the variation in
electron density from one point to another in the
material. It has to point out that this small angle
scattering has no relation on the inhomogeneities
of atomic dimension that give rise to wide-angle
diffraction. Indeed only the fluctuation of electron
densities, in a range 30-1000 A, determines the
nature of the small-angle scattering. Therefore
from the standpoint of small-angle the electron
concentration in a crystal structure may be consi-
dered as a continuous distribution of electrons.

The theory of the scattering due to density fluc-
tuations in an ensemble of identical particle states
that the scattered intensity extrapolated towards
zero scattering angles is proportional to the fluc-
tuation of the particle density [60-61].

The density fluctuation is defined as the ratio of
the variance to the mean:

_ (NS
¥(v) D

where N are the number of particle in a reference
volume v, of a certain size and shape. As v
increases (v—o0) the function ¥ (v) converges to a
finite value ¥ (o), that is called thermodynamic
limit.

By considering an X-rays incident beam and the
electrons as the scattering media, the scattering
intensity I (in electron unity) is bounded to the
electron density fluctuation, by the following equa-
tion:

lim-L = <ND—<W?
0 N (ND el

Where N is the number of electrons in the
irradiated volume v. Function ¥« can be measured
through the intensity of X rays scattered by the

unit volume [66].
If the sample is composed of Ny identical par-
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ticles (molecules) with Zu electron per particle, the
particle density fluctuation ¥y is given by:

wel
Ty= i
The particle density fluctuation ¥w, in the case
of one component fluid, is related to the isothermal
compressibility x T :

Yyv=pvksTxr

where o is the particle density, ke the Boltzmann
constant, T the absolute temperature. It has been
shown [62] that ¥y is composed of two terms: the
first one due to pressure fluctuations, and propor—-
tional to the adiabatic compressibility xs, and the
second one due to the entropy fluctuations, and it
is proportional to (x+ xs).

For crystalline solid, if harmonic approximation
is valid, the total density fluctuation is entirely due
to lattice vibrations.

In the case of non-equilibrium state, e.g. a
super-cooled liquid, the value of ¥« depend on
how the average value <N> of the particles (elec-
trons or atoms) has been calculated, that is if <N>
is an average value with respect to time or to
space. If the reference volume is fixed in the space
and the number of the particle inside it changes
with time, for time t—o it is possible to define a
time average value <N>; on the other end if the
reference volume v is moved around in the sample
and the number N of particles falling within the
volume fluctuates, it is possible to evaluate a space
average value <N>s. While in equilibrium conditions
the time and space average are equivalent (ergodic
theorem) in non equilibrium conditions the fluctua-
tions in time of the particle density is smaller than
the fluctuations of the particle density in space {at
a given time).

In the case of X-ray diffraction the average is
basically a space average.

For material in glassy state, a disordered frozen-
in state, the time average would be zero, at least
for an interval time corresponding to a normal ex-
perimental run, while the space average is different
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from zero [63-67]. SAXS is useful to follow the
physical aging and pressure densification in
polymers. Curro and Roe [67] have shown that ¥
(v) is related to the weight average volume of an
hole <f.>, by the expression :

_

v)= LK fw

W)=pr-<f —L(l_@z

where p. is the overall electron density, and ¢ is
the volume fraction of the holes.

5.6. Positron Annhilation Spectroscopy
(PAS)

A positron (e) injected into a non-metallic solid
from a radioactive source, after a fast slowing-
down requiring some p-second at most [43] be-
comes thermalized and may interact with the
electrons of the medium. Owing this interaction the
pair e'e  annihilates with production of two- or,
much more rarely, three-photons. However, before
this last event, the positron can be involved in a
short although complex history: for instance, it can
be annihilated into microscopic domains charac-
terized by different electron densities (amorphous
and crystalline regions, different kind of defects,
etc.). Moreover, it can form, with an electron of the
medium, a bound system that is called positronium
(Ps). The result is a positron annihilation spectrum
with different components, whose study is poten-
tially useful to obtain information on the structure
of the host medium. In the case of the lifetime
spectroscopy (PALS), the most common positron
technique, a timing spectrum is typically formed by
three components, corresponding to annihilations
from ortho-Ps, from free positrons and from para-
Ps (in order of decreasing lifetime). Details of this
technique will be given in the second part.
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