• Title/Summary/Keyword: Background light

Search Result 741, Processing Time 0.028 seconds

A Study on the Sensory Evaluation of Appearance and Fit for Basic Apparel Patterns (의복원형의 외관과 맞음새를 위한 관능평가 방법에 대한 연구)

  • 최미성
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1627-1637
    • /
    • 2002
  • The objective of this study is to analyze the images of basic bodice apparel displayed on the PC monitor connected to digital camera, and to suggest a more efficient alternative method that enables the expert judge to evaluate the subject both traditional method and displayed images on the computer. Appearance evaluation has traditionally been assessed using subjective method dependent upon expertjudges' senses with the naked eye after direct observation of a living model. This research faces the new challenge focusing on the sensory evaluation of appearance for basic apparel patterns, which can overcome the space and time limitations of the traditional feet methods. A total fifteen basic bodice garment (3 types of $pattern\;{\times}\;5$ subject) were constructed with same fabrics. The appearance evaluation items consist of lg questions of upper torso. The image takes font, back and side view of the dressed subject with three different situations. Data was analyzed using percentiles, standard deviation T-test and ANOVA. Taken together, the present result of appearance evaluation through digital camera image shows that there is a significant difference ($p{\leq}.001$) in the response to the placement of the neckline, the waist & shoulder dart, the general ease of the bust & waist area, the side seam, the perpendicular of the waist hem and general acceptability between the above three different situations; the image in the condition of greenish yellow background with front light showed the highest score through all questions. These results depend on the kind of background colors with the light.

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

Flowering Control by Using Red Light of Chrysanthemum (적색광을 이용한 국화의 개화조절)

  • Hong, Seung-Chang;Kwon, Soon-Ik;Kim, Min-Kyeong;Chae, Mi-Jin;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2013
  • BACKGROUND: The incandescent bulb and compact fluorescent lamp are widely using as a light sources for daylength extension of chrysanthemum. But, these light sources consume a lot of electricity and have short longevity. A light-emitting diode (LED) is a semi conductor light source. LEDs have many advantages over incandescent light sources including lower energy consumption, longer lifetime. In this study, we investigated the intensity of red light to control flowering of chrysanthemum (Dendranthema grandiflorum cv. "Shinma") by using LEDs. METHODS AND RESULTS: The red (660 nm) and far-red (730 nm) light were irradiated subsequently to investigate photo-reversible flowering responses of chrysanthemum. The flowering of chrysanthemum was inhibited by night interruption with red light but subsequently irradiated far-red light induced the flowering of chrysanthemum. This photoreversibility, reversion of the inductive effect of a brief red light pulse by a subsequent far-red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Four different intensity of red light of 0.7, 1.4, 2.1, and $2.8{\mu}mol/m^2/s$ (PAR) were irradiated at growth room in order to determine the threshold for floral inhibition of chrysanthemum. Over $1.4{\mu}mol/m^2/s$ of the red lights irradiated chrysanthemums were not flowered. The plant length, fresh weight, number of leaves, and leaf area of chrysanthemum irradiated with red light were increased by 17%, 36%, 11%, and 48%, respectively, compared to those of compact fluorescent lamp. CONCLUSION(S): The red light and subsequential far-red light showed that the photoreversibility on flowering of chrysanthemum. The red light ($1.4{\mu}mol/m^2/s$ of red LEDs) and white light (50 Lux of compact fluorescent lamp) have the same effect on inhibition of flowering in chrysanthemum. Additionally, the red light increased the plant height and dry weight of chrysanthemum.

MODELING OF THE ZODIACAL LIGHT FOR THE AKARI MID-IR ALL-SKY DIFFUSE MAPS

  • Kondo, Toru;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Amatsutsu, Tomoya;Nakamichi, Keichiro;Sano, Hidetoshi;Ootsubo, Takafumi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • The AKARI 9 and 18 µm diffuse maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of ~6". The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic diffuse emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we find that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

A Development of on Instrument for Measuring Glare Sensation in the Visual Field (시야내의 글레어감각 측정용 기기의 개발)

  • Park, Sung-Ryul;Kim, Jeong-Tai;Kim, Won-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2009
  • Discomfort Glare from the artificial light sources is an important issue in assessment of lighting quality for healthy buildings. Glare, as a factor of the characteristics of brightness, which has been defined as the sensation produced by contrast and luminance within an entire field view, unfavorably influences the occupants who performs visual tasks. It may cause annoyance and discomfort by interruption of visibility. In the whole visual field, glare can be determined by effects of the position, the luminance and the size of the light source and brightness of the surroundings. Therefore, experimental equipment is required to maintain a constant visual lighting environment. Recent studies have been developed and used the instrument for glare sensation evaluation but the instruments showed some difficulties to verify the correlation of glare indicators. The instrument have been developed with reference to former studies. It is called the Glare Tester. This is consist of 2[m]-diameter vertical dome screen painted with white flat paint, and light sources installed inside the screen. These light sources can provide various range of brightness at any inner surface of the screen. 2 Glare light sources can provide the value of luminance within the range of $0{\sim}150,000[cd/m^2]$. Moreover, 12 light sources are used for background luminance and it can perform the value of luminance within the range of $0{\sim}350[cd/m^2]$. Several experiments have been conducted using this Glare Tester to evaluate the range of the visibility, the values of BCD and the glare sensation in lower and upper visual field.

Influence of Water Temperature, Background Color, and Light Intensity in Feeding, Growth and Blind-Side Hypermelanosis of Starry Flounder, Platichthys stellatus (강도다리, Platichthys stellatus의 먹이섭식, 성장 및 무안측 체색발현에 있어 수온, 수조색상 및 조도의 영향)

  • Kang, Duk-Young;Kim, Won-Jin;Kim, Hyo-Chan;Chang, Young Jin
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.185-193
    • /
    • 2014
  • To find the influence of water temperature, tank color and illumination in feeding, growth and blind-side hypermelanosis of starry flounder, Platichthys stellatus, in the present study, we performed a series of temperature, background color and illumination intensity test for 180 days (From June to December). The test was done in duplicate at 100 fish/tank (430% of initial covering area [PCA]) with the selected ordinary juvenile flounder (TL $17.3{\pm}0.5cm$, BW $82.5{\pm}0.2g$). The rearing was performed in darkgreen FRP aquarium tanks ($H100cm{\times}L100cm{\times}W100cm$; bottom area $1m^2$) lighten with average 1,000 lux and 230 lux, and in white FRP aquarium tank ($H100cm{\times}L100cm{\times}W100cm$; bottom area $1m^2$) lighten with average 230 lux of light intensity. We investigated correlation of daily food intake (DFI) with water temperature and salinity, and compared the influences of background colors and light intensity in DFI, food efficiency (FE), growth, survival rate, and ratio of malpigmented blind-side area and ambicolored fish ratio. In DFI, although it was not related with salinity, the amount was significantly decreased under 0.5 g/fish/day in summer and winter season, but was significantly increased over 1.5 g/fish/day in autumn season showing from $10^{\circ}C$ to $20^{\circ}C$ in water temperature. In background and illumination test, DFI, FE and survival rate showed no difference among three groups. The ratios of malpigmented blind-side area and ambicolored fish were also not significantly different among three groups, indicating that the blind-side hypermelanosis of starry may be governed not by background color (or light intensity) but by a genetics external trait inherited from parents.

Face Detection Using Region Segmentation on Complex Image (복잡한 영상에서의 영역 분할을 이용한 얼굴 검출)

  • Park Sun-Young;Kang Byoung-Doo;Kim Jong-Ho;Kwon O-Hwa;Seong Chi-Young;Kim Sang-Kyoon;Lee Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.160-171
    • /
    • 2006
  • In this paper, we propose a face detection method using region segmentation to deal with complex images that have various environmental changes such as mixed background and light changes. To reduce the detection error rate due to background elements of the images, we segment the images with the JSEG method. We choose candidate regions of face based on the ratio of skin pixels from the segmented regions. From the candidate regions we detect face regions by using location and color information of eyes and eyebrows. In the experiment, the proposed method works well with the images that have several faces and different face size as well as mixed background and light changes.

  • PDF

Photoreversibility of Fruiting and Growth in Oriental Melon (Cucumis melo L.)

  • Hong, Sung-Chang;Kim, Jin-Ho;Yeob, So-Jin;Kim, Min-Wook;Song, Sae-Nun;Lee, Gyu-Hyun;Kim, Kyeong-Sik;Yu, Seon-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.312-318
    • /
    • 2020
  • BACKGROUND: Photoreversibility, a reversion of the inductive effect of a brief red light pulse by a subsequent far red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Plants use photoreceptors to sense photo signal and to adapt and modify their morphological and physiological properties. Phytochrome recognizes red light and far red light and plays an important role in regulating plant growth and development. METHODS AND RESULTS: The reversal responses of growth and fruiting characteristics were investigated to increase the yield of oriental melon (Cucumis Melo L. var. Kumsargakieuncheon) by means of controlling light quality in a plastic house. Red (R:660nm) and far red (FR:730nm) lights were subsequently irradiated on the whole stems and leaves of the oriental melon plant during growing periods, using red and far red LEDs as light sources, from 9:00 PM daily for 15 minutes. The intensities of R and FR light were 0.322-0.430 μmol m-2s-1 and 0.250-0.366 μmol m-2s-1, respectively. Compared to R light irradiation, combination of R and FR light irradiation increased the length of internode, number of axillary stems, number of female flowers, and fruit number of oriental melons. The results of treatment with R were similar to R-FR-R light irradiation in terms of length of internode, number of axillary stems, number of female flowers, and number of fruits. When FR treatment was considered, R-FR and R-FR-R-FR light irradiation had similarities in responses. These reversal responses revealed that oriental melon showed a photoreversibility of growth characteristics, flowering, and fruiting. CONCLUSION: These results suggested the possibility of phytochrome regulation of female flower formation and fruiting in oriental melon. The fruit weight of the oriental melon was the heaviest with the R light irradiation, while the number of fruits was the highest with the FR light. With the FR light irradiation, the fruit weight was not significantly higher compared to that of the control. Meanwhile, the yield of oriental melon fruits increased by 28-36% according to the intensities of the FR light due to the increases of the number of fruits.

Quantitative Light-Induced Fluorescence: A Potential Tool for Dental Hygiene Process (Quantitative Light-Induced Fluorescence의 이해와 치위생 과정에서의 활용방안)

  • Kim, Hee-Eun
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.115-124
    • /
    • 2013
  • Recently, there have been improvements in diagnostic methods for the assessment of early caries lesions. The reason is that dental professionals are seeking methods to reliably detect incipient dental caries and to remineralize them. This review examines the literature on principles, theoretical background, and history of the Quantitative Light-Induced Fluorescence (QLF) system (Inspektor Research Systems BV, The Netherlands). Furthermore, this paper discusses the potential application of QLF system to clinical practice for educational purpose, enabling dental hygiene students to perform oral health assessment using the QLF system. In addition, the clinical application of QLF system can motivate patients by providing additional visual information about caries and bacterial activity. The evidences on validity and reliability of the QLF system for detection of longitudinal changes in de/remineralization and caries were examined. The QLF system is capable of monitoring and quantifying mineral changes in early caries lesions. Therefore, it can be used to assess the impacts of caries preventive measures on the remineralization and reversal of the caries process. And the QLF system is a very promising equipment to assess educational effectiveness for dental hygiene students in their learning process. In conclusion, the QLF system is the most effective technology for more sensitive staging of caries and treatment without surgical intervention.