• 제목/요약/키워드: Background illumination

검색결과 190건 처리시간 0.024초

FLD를 이용한 얼굴 검출 알고리즘의 성능 향상 (Performance Enhancement of Face Detection Algorithm using FLD)

  • 남미영;김광백
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.783-788
    • /
    • 2004
  • 영상에서 얼굴이 있는 위치를 찾거나 얼굴을 검출하기 위한 많은 방법들이 연구되고 있다. 영상에서 얼굴 검출은 얼굴의 크기, 얼굴이 있는 위치, 그리고 다양한 포즈, 조명 상태 등의 변화에 따라 달라진다 따라서 얼굴 검출과 인식에 있어서의 어려운 점은 얼굴의 크기와 위치, 거리, 조명, 포즈 때문에 나타나는 것이다. 본 논문에서는 다양한 얼굴 크기와 얼굴이 있는 위치 등에 강인한 얼굴 검출을 위해 피셔의 선형 판별 함수를 이용하는 방법을 제안한다. 선형 판별식을 이용하여 효과적으로 얼굴을 검출하기 위해서는 학습 방법 및 학습에 사용되는 데이터들의 구성이 중요하다. 그 이유는, 얼굴 검출을 위해 사용되는 학습 데이터들은 조명과 포즈에 영향을 받기 때문에 얼굴의 특징들을 반영하는 학습 데이터들의 구성이 중요하다. 따라서 본 논문에서는 복잡한 배경과 다양한 크기의 얼굴을 검출하기 위한 계층적인 방법을 제시하며, 효과적인 피셔 판별 분석을 위하여 얼굴과 비얼굴 학습 데이터의 효율적인 분류 방법을 제안한다.

배경의 변화에 따른 피부색상 검출 알고리즘의 성능 비교 (Performance Comparison of Skin Color Detection Algorithms by the Changes of Backgrounds)

  • 장석우
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.27-35
    • /
    • 2010
  • 정확하게 피부 색상을 검출하는 방법은 얼굴 인식 및 추적, 표정 인식, 성인 영상 검출, 헬스케어 등의 다양한 분야에서 매우 유용하게 사용된다. 본 논문에서는 일반광과 실내 조명이 더해진 환경에서 피사체의 거리를 변경하면서, 그리고피사체배경의색상을변경함에따라다양한피부색상검출알고리즘의성능을비교평가한다. 실험대상은 피부톤의 차이를 보이는 남자 2명과 여자 한 명이고, 배경을 화이트, 블랙, 오렌지, 핑크, 옐로우의 5가지 색으로 구분하여 테스트를 하였다. 성능 평가에 사용한 피부색상 추출 알고리즘은 Peer 알고리즘, NNYUV, NNHSV, LutYUV, Kismet 알고리즘이며, 카메라와 피사체 사이의 거리는 60cm에서 120cm 사이로 한정하여 실험을 하였다. 성능 측정 실험 결과 피사체의 배경 변화에 따른 알고리즘이 성능의 차이를 보이는데, 전반적으로 뉴럴 네트워크를 이용한 NNHSV, NNYUV, 그리고 LutYUV이 안정적인 결과를 보여주었으며, 나머지 알고리즘들은 배경의 변화에 따라 피부색상 검출율이 영향을 많이 받았다. 본 논문에서 보여준 다양한 성능 평가 결과들은 피사체의 주변 환경이 동적으로 변화하는 실제 환경에서 상황에 따라 적응적이고 정확도가 높은 피부 색상 추출 알고리즘을 개발하는데 효과적으로 활용될 것으로 기대된다.

적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법 (An Effective Shadow Elimination Method Using Adaptive Parameters Update)

  • 김병수;이광국;윤자영;김재준;김회율
    • 대한전자공학회논문지SP
    • /
    • 제45권3호
    • /
    • pp.11-19
    • /
    • 2008
  • 영상 내에서 이동하는 객체를 추출하는 전경 분리 방법은 객체의 일치 추적 및 인식에 있어서 필수적인 기술이다. 하지만 이동하는 객체 주변에 그림자가 발생하는 경우 이러한 전경 분리 방법에서는 그림자도 전경 영역으로 잘못 판단하여 분리하게 되어 이동 객체의 정확한 형태를 파악하거나 위치를 추정하기 어려운 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 색상 정보를 이용하여 그림자를 모델링하고 이를 통해 전경 영역 내의 그림자 화소를 Bayesian 분류법에 따라 제거하는 방법을 제안하였다. 특히 제안하는 방법은 매개변수 갱신 과정을 통해 그림자의 특성이 동적으로 모델링되기 때문에 주변 조명의 지속적인 변화에 적응적으로 대응할 수 있다. 실험 결과 제안하는 방법은 다양한 환경에서 그림자를 효과적으로 제거하는 것을 확인하였다.

조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법 (An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values)

  • 나민영;김현정;김태영
    • 한국멀티미디어학회논문지
    • /
    • 제14권5호
    • /
    • pp.607-613
    • /
    • 2011
  • 본 논문에서는 조명과 배경에 강인한 동적임계값을 이용한 손 영상 분할방법을 제안한다. 먼저 시간단위 입력 차영상을 구하여 움직이는 물체에 대한 손의 실루엣을 추출한다 그 후, 추출된 손 실루엣에 해당하는 영상의 R,G,B 히스토그램 분석을 통하여 R,G,B 각각에 대한 임계구간을 동적으로 구한다. 마지막으로 획득된 동적 임계값을 이용하여 영상에서 손영역을 분할한 다음 모폴로지, 연결요소 분석, 플러드필 연산을 이용한 잡음 제거를 수행한다. 실험 결과 본 논문에서 제시하는 기법은 기존의 비전 기술을 통한 손 인식 기법들과 비교하여 별도의 고정임계값을 두지 않고 실행시간에 정확한 임계값을 추출 할 수 있으며, 다양한 배경과 조명에 대해서도 정확하게 손을 분할할 수 있다. 본 연구에서 제안한 기법은 혼합 현실 응용을 위한 사용자 인터페이스로 사용될 수 있다.

컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법 (A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance)

  • 지은미;윤호섭;이상호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.809-817
    • /
    • 2002
  • 본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.

가간섭 영역 외의 배경 잡음성 간섭무늬 신호 필터링을 통한 백색광 주사간섭계의 성능 향상 (Interference Fringe Signal Filtering Method for Performance Enhancing of White Light Interfrometry)

  • 임해동;이민우;이승걸;박세근;이일항;오범환
    • 한국광학회지
    • /
    • 제20권5호
    • /
    • pp.272-275
    • /
    • 2009
  • 본 논문에서는 백색광 간섭계(White Light Interferometry, WLI)의 데이터 처리 과정에서 가간섭 영역 외의 배경 잡음성 신호 필터링을 통하여 백색광 주사 간섭계의 성능을 향상시켰다. 광학계의 개구수(Numerical Aperture, NA)가 유한한 백색광 간섭계의 경우, 단차가 크고 표면 굴곡이 심한 시료를 측정하게 되면 유한한 초점심도(Depth Of Focus, DOF)에 의하여 배경 잡음이 발생하며, 반사가 심한 경면의 경우에는 간섭무늬 신호보다 배경 잡음의 영향을 많이 받게 된다. 따라서 배경 잡음을 제거하기 위하여 간섭무늬 신호 자체 형상에 영향을 주지 않으면서 효율적으로 배경 잡음 필터링이 가능한 전후 구간 평균법을 제시하였다. 전후구간 평균법은 원 데이터와 그 이동평균과의 차이를 이용하는 방법으로, 고속으로 대략적인 정점의 위치를 파악한 후 정밀도가 높은 가시도 정점 검출 알고리즘으로 처리하여 측정 속도와 정밀도를 높였다. 전후구간 평균법을 이용하여 배경 잡음을 제거한 경우, 제거하지 않은 경우와 비교하여 잡음 화소가 약 1/4로 감소되었다.

초음파 검사실의 조도 환경에 관한 연구 (A Study on the Illumination Environment of Ultrasound Examination Room)

  • 임인철;이효영;안현
    • 한국방사선학회논문지
    • /
    • 제11권4호
    • /
    • pp.213-219
    • /
    • 2017
  • 본 연구의 목적은 초음파 검사실의 검사환경 설정에 있어 실증적인 기초자료를 제공하는 것에 그 목적을 두고 새로운 초음파 검사실의 검사환경을 설계함에 있어 검사실의 적정조도를 설정하는데 기초자료로 제공하고자 한다. 방법으로는 부산에 소재하고 있는 종합병원 6군데 48곳의 초음파 검사실을 대상으로 조도와 관련된 초음파실 환경을 조사하고 초음파 검사대상자에게 초음파 검사실 환경에 대하여 설문조사를 실시하였다. 결과로는 초음파 검사실 차폐체의 종류에서는 성별, 연령별, 검사부위에 따른 분석에서 모두 Door+Curtain에서, 광원의 종류에서는 LED, 광원조절기가 필요하다에서 점수가 높게 나타났다. 초음파 검사실 환경조사에서는 초음파 검사실 조도 밝기는 평균 10 Lux로서 WHO와 CEC에서 권고하는 조도 밝기범위에 포함되고 있었으며 초음파 검사 대기실 조도 밝기(초음파 검사 대기실, 복도)는 평균 300~800 Lux를 나타내어 KSA 3011에서 권고하는 병원의 조도환경인 300 Lux이상을 만족하였다. 결론적으로 초음파 검사 대상자의 일반적인 배경과 초음파 검사실 관련 환경 요인을 분석한 결과를 토대로 향후 초음파 검사실 환경을 개선하거나 새로운 검사실을 설계함에 있어 기초자료로 제공하고자 한다.

다중색상 모델과 문자배치 정보를 이용한 복잡한 배경 영상에서의 자동차 번호판 추출 (A License Plate Detection Method Using Multiple-Color Model and Character Layout Information in Complex Background)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1515-1524
    • /
    • 2008
  • 본 논문에서는 복잡한 배경이 나타나는 자동차 영상에서 다중색상 모델과 문자배치 정보를 이용한 번호판 추출 방법을 제안한다. 녹색 번호판과 흰색 번호판에 나타나는 문자의 배치 형태가 다르기 때문에, 먼저 번호판 색상을 추정한 후 해당 색상 번호판의 문자배치 정보를 최대한 활용하는 접근 방식을 사용하였다. RGB 색상 모델에 HSI와 YIQ 색상 모델을 결합한 다중색상 모델을 이용하여 녹색 영역이 추출되면, 해당 영역에서 추출된 연결요소를 분석하여 녹색 번호판의 문자배치 형태를 탐색한다. 이때 번호판이 추출되지 않으면, 전체 영역에서 추출된 연결요소를 분석하여 흰색 번호판의 문자배치 형태를 탐색한다. 마지막으로 번호판 문자배치 형태와 유사한 연결요소들을 묶어 번호판을 추출한다. 4개 영상에 대한 실험 결과 98.1%의 번호판 추출 성공률을 얻었으며, 제안된 방법이 빛의 세기, 그림자, 그리고 날씨의 변화에도 강건함을 알 수 있었다.

  • PDF

다양한 조명 환경에 강인한 실시간 얼굴확인 기법 (Robust Real-time Face Detection Scheme on Various illumination Conditions)

  • 김수현;한영준;차형태;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.821-829
    • /
    • 2004
  • 얼굴인식기술이 인증 및 보안을 위한 도구로 활용되고 있지만 입력영상의 상태, 즉 조명환경에 따라 적용할 수 있는 범위가 제약적일 수밖에 없다. 본 논문에서는 이러한 제약을 최소화하기 위해 측면과 후면조명 등의 불규칙한 조명환경에서 획득한 입력영상에서 얼굴의 특징을 구분하여 얼굴영상임을 확인하는 방법을 제안한다. 제안된 방법은 에지차영상을 얼굴특징이 두드러지도록 전처리한 후, X와 Y축의 프로파일을 이용하여 얼굴영역을 예측하고 영역 내의 밝기분포를 이용하여 눈, 코, 입 등의 얼굴특징이 놓일 수 있는 수평영역을 분리한다. 수평영역들은 눈, 코, 입을 포함할 수 있는 영역의 그룹으로 나누어지고 각 그룹에서 코와 입, 그리고 눈의 순서로 특징들을 검출한다. 얼굴여부는 검출된 특징들의 구조적인 관계를 검증하여 확인한다. 제안된 알고리즘은 배경색상이나 조명의 방향과 색상 등으로 인해 얼굴의 형태와 특징이 결여된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.

웨이브렛 변환과 신경망 기반 얼굴 인식 (Facial Image Recognition Based on Wavelet Transform and Neural Networks)

  • 임춘환;이상훈;편석범
    • 대한전자공학회논문지TE
    • /
    • 제37권3호
    • /
    • pp.104-113
    • /
    • 2000
  • 본 연구에서는 웨이브렛 변환과 신경망 기반 얼굴 인식 알고리즘을 제안한다. 이 알고리즘은 일정한 조도 상태에서 두 개의 영상을 그레이 레벨로 취득하고 가우시안 필터를 이용하여 영상 내에 존재하는 잡음을 제 거한 후 배경영상과 얼굴이 포함된 입력영상의 차를 구하여 차영상에 대해 축소와 팽창과정을 통한 전처리 과정을 거치게 된다. 그리고 팽창 영상으로부터 마스크를 생성하여 마스크를 얼굴이 존재하는 원 영상에 투영하여 배경과 얼굴을 분할하고 분할된 얼굴영상의 에지를 조사하여 눈, 코, 입, 눈썹 그리고 뺨이 포함된 사 각 모양의 특징영역을 검출한다. 그리고 특징영역에 대해 이산 웨이브렛 변환을 수행하여 특징벡터를 추출하고 정규화한 후 신경망의 입력벡터로 하여 학습에 의한 인식을 수행한다. 시뮬레이션 결과 학습된 영상에 대해서는 100%의 인식률을 보였고 학습되지 않는 실험적 영상에 대해서도 92%의 인식률을 나타내었다.

  • PDF