• 제목/요약/키워드: Background Segmentation

검색결과 411건 처리시간 0.02초

RGB Motion Segmentation using Background Subtraction based on AMF

  • 김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.81-87
    • /
    • 2013
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

RGB Motion Segmentation using Background Subtraction based on AMF

  • 김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권3호
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

Background Surface Estimation for Reverse Engineering of Reliefs

  • Liu, Shenglan;Martin, Ralph R.;Langbein, Frank C.;Rosin, Paul L.
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 2007
  • Reverse engineering of reliefs aims to turn an existing relief superimposed on an underlying surface into a geometric model which may be applied to a different base surface. Steps in this process include segmenting the relief from the background, and describing it as an offset height field relative to the underlying surface. We have previously considered relief segmentation using a geometric snake. Here, we show how to use this initial segmentation to estimate the background surface lying under the relief, which can be used (i) to refine the segmentation and (ii) to express the relief as an offset field. Our approach fits a B-spline surface patch to the measured background data surrounding the relief, while tension terms ensure this background surface smoothly continues underneath the relief where there are no measured background data points to fit. After making an initial estimate of relief offset height everywhere within the patch, we use a support vector machine to refine the segmentation. Tests demonstrate that this approach can accurately model the background surface where it underlies the relief, providing more accurate segmentation, as well as relief height field estimation. In particular, this approach provides significant improvements for relief concavities with narrow mouths and can segment reliefs with small internal holes.

Motion Segmentation from Color Video Sequences based on AMF

  • 알라김;김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.31-38
    • /
    • 2009
  • A process of identifying moving objects from data is typical task in many computer vision applications. In this paper, we propose a motion segmentation method that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter (AMF) was chosen to perform background modelling. To demonstrate the effectiveness of proposed approach, we tested it gray-scale video data as well as RGB color space.

  • PDF

저해상도 칼라 영상의 색상 정보와 에지정보를 이용한 배경 분리 (A Background Segmentation Using Color and Edge Information In Low Resolution Color Image)

  • 정민영;박성한
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2003
  • In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.

  • PDF

자기 조직화 기법을 활용한 컬러 영상 배경 영역 추출 (Background Segmentation in Color Image Using Self-Organizing Feature Selection)

  • 신현경
    • 정보처리학회논문지B
    • /
    • 제15B권5호
    • /
    • pp.407-412
    • /
    • 2008
  • 잡음이 심한 배경을 가진 영상 내부의 영역 분할 처리 과정은 해결하기 매우 어려운 문제로 인식되어 왔다. 그에 따라 이 문제를 해결하기 위한 기초적 방법론에 관한 연구 및 주어진 문제에 따라 실제적 적용을 위한 다양한 노력이 있어왔다. 본 논문에서는 영상 분할을 위한 새로운 접근법을 제시하는 것을 목적으로 하였다. 새로운 방법론으로서 기존의 관심 객체 분할의 반대인 배경 영역 분할이라는 새로운 관점을 연구의 중심으로 하였다. 기반 이론으로는 승자 독식 원리의 자기 학습 이론 알고리즘에서 특징 선택을 위한 자기 조직화를 분석하고 이를 문제 해결에 적용하였다. 실제적 영상 데이터를 통한 실험을 통해 배경 영역 분할을 적용한 영상 분할은 효과적으로 수행될 수 있음을 실험 결과로 제시해 보였다.

Accurate Segmentation Algorithm of Video Dynamic Background Image Based on Improved Wavelet Transform

  • Ming, Ming
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.711-718
    • /
    • 2022
  • In this paper, an accurate segmentation algorithm of video dynamic background image (VDBI) based on improved wavelet transform is proposed. Based on the smooth processing of VDBI, the traditional wavelet transform process is improved, and the two-layer decomposition of dynamic image is realized by using two-dimensional wavelet transform. On the basis of decomposition results and information enhancement processing, image features are detected, feature points are extracted, and quantum ant colony algorithm is adopted to complete accurate segmentation of the image. The maximum SNR of the output results of the proposed algorithm can reach 73.67 dB, the maximum time of the segmentation process is only 7 seconds, the segmentation accuracy shows a trend of decreasing first and then increasing, and the global maximum value can reach 97%, indicating that the proposed algorithm effectively achieves the design expectation.

개선된 다중 구간 샘플링 배경제거 알고리즘 (An Improved Multiple Interval Pixel Sampling based Background Subtraction Algorithm)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2019
  • Foreground/background segmentation in video sequences is often one of the first tasks in machine vision applications, making it a critical part of the system. In this paper, we present an improved sample-based technique that provides robust background image as well as segmentation mask. The conventional multiple interval sampling (MIS) algorithm have suffer from the unbalance of computation time per frame and the rapid change of confidence factor of background pixel. To balance the computation amount, a random-based pixel update scheme is proposed and a spatial and temporal smoothing technique is adopted to increase reliability of the confidence factor. The proposed method allows the sampling queue to have more dispersed data in time and space, and provides more continuous and reliable confidence factor. Experimental results revealed that our method works well to estimate stable background image and the foreground mask.

복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구 (A Segmentation Method for a Moving Object on A Static Complex Background Scene.)

  • 박상민;권희웅;김동성;정규식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF