• Title/Summary/Keyword: Background Model

검색결과 3,532건 처리시간 0.027초

화자인증 시스템에서 선정 방법에 관한 연구 (A Study on Background Speaker Selection Method in Speaker Verification System)

  • 최홍섭
    • 음성과학
    • /
    • 제9권2호
    • /
    • pp.135-146
    • /
    • 2002
  • Generally a speaker verification system improves its system recognition ratio by regularizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. The speaker-based cohort method is one of the methods that are widely used for selecting background speaker model. Recently, Gaussian-based cohort model has been suggested as a virtually synthesized cohort model, and unlike a speaker-based model, this is the method that chooses only the probability distributions close to basic speaker's probability distribution among the several neighboring speakers' probability distributions and thereby synthesizes a new virtual speaker model. It shows more excellent results than the existing speaker-based method. This study compared the existing speaker-based background speaker models and virtual speaker models and then constructed new virtual background speaker model groups which combined them in a certain ratio. For this, this study constructed a speaker verification system that uses GMM (Gaussin Mixture Model), and found that the suggested method of selecting virtual background speaker model shows more improved performance.

  • PDF

영상차이를 이용한 움직임 검출에 필요한 배경영상 모델링 및 갱신 기법 연구 (A Alternative Background Modeling Method for Change Detection)

  • 장일권;김경중;김은태;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.159-161
    • /
    • 2004
  • Many motion object detection algorithms rely on the process of background subtraction, an important technique that is used for detecting changes from a model of the background scene. This paper propose a novel method to update the background model image of a visual surveillance system which is not stationary. In order to do this, we use a background model based on statistical qualities of monitored images and another background model that excluded motions. By comparing each changed area computed from the two background model images and current monitored image, the areas that will be updated are decided.

  • PDF

다중 배경모델과 순시적 중앙값 배경모델을 이용한 불안정 상태 카메라로부터의 실시간 이동물체 검출 (Real-Time Detection of Moving Objects from Shaking Camera Based on the Multiple Background Model and Temporal Median Background Model)

  • 김태호;조강현
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.269-276
    • /
    • 2010
  • In this paper, we present the detection method of moving objects based on two background models. These background models support to understand multi layered environment belonged in images taken by shaking camera and each model is MBM(Multiple Background Model) and TMBM (Temporal Median Background Model). Because two background models are Pixel-based model, it must have noise by camera movement. Therefore correlation coefficient calculates the similarity between consecutive images and measures camera motion vector which indicates camera movement. For the calculation of correlation coefficient, we choose the selected region and searching area in the current and previous image respectively then we have a displacement vector by the correlation process. Every selected region must have its own displacement vector therefore the global maximum of a histogram of displacement vectors is the camera motion vector between consecutive images. The MBM classifies the intensity distribution of each pixel continuously related by camera motion vector to the multi clusters. However, MBM has weak sensitivity for temporal intensity variation thus we use TMBM to support the weakness of system. In the video-based experiment, we verify the presented algorithm needs around 49(ms) to generate two background models and detect moving objects.

휴대용 화자확인시스템을 위한 배경화자모델 설계에 관한 연구 (A Study on Background Speaker Model Design for Portable Speaker Verification Systems)

  • 최홍섭
    • 음성과학
    • /
    • 제10권2호
    • /
    • pp.35-43
    • /
    • 2003
  • General speaker verification systems improve their recognition performances by normalizing log likelihood ratio, using a speaker model and its background speaker model that are required to be verified. So these systems rely heavily on the availability of much speaker independent databases for background speaker model design. This constraint, however, may be a burden in practical and portable devices such as palm-top computers or wireless handsets which place a premium on computations and memory. In this paper, new approach for the GMM-based background model design used in portable speaker verification system is presented when the enrollment data is available. This approach is to modify three parameters of GMM speaker model such as mixture weights, means and covariances along with reduced mixture order. According to the experiment on a 20 speaker population from YOHO database, we found that this method had a promise of effective use in a portable speaker verification system.

  • PDF

혼잡한 환경에 적합한 적응적인 배경모델링 방법 (Adaptive Background Modeling for Crowded Scenes)

  • 이광국;송수한;가기환;윤자영;김재준;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제11권5호
    • /
    • pp.597-609
    • /
    • 2008
  • 기존의 배경 모델링 방법은 배경 모델의 반복적 갱신(recursive update)으로 인해 배경보다 객체가 더 자주 등장하는 혼잡한 환경에서는 정확한 배경 모델링을 생성하기 어려운 문제를 지니고 있다. 본 논문은 이러한 기존 방법의 문제를 해결하기 위해 기존의 혼합 Gaussian 모델을 기반으로 하는 적응적 배경 모델링 방법을 제안한다. 제안한 방법은 영상 내 전경 영역의 비율에 따라 배경 모델의 학습 비율을 적응적으로 조절한다. 따라서, 혼잡 상황에서는 배경 모델의 갱신을 억제하여 배경 모델을 잘 유지시키는 것이 가능하다. 실험을 통해 제안한 방법이 일반적인 상황의 영상에서는 기존 방법과 유사한 정확도를 보이지만 혼잡한 상황에서는 기존 방법과 비교하여 배경 제거를 효과적으로 수행하는 것을 확인하였으며, 또 정확도 측정 결과 혼잡한 상황의 영상에서 기존 방법과 비교하여 F 값이 5-10% 가량 향상함을 확인하였다.

  • PDF

야간 영상 감시를 위한 GMM기반의 배경 차분 (Background Subtraction based on GMM for Night-time Video Surveillance)

  • 여정연;이귀상
    • 스마트미디어저널
    • /
    • 제4권3호
    • /
    • pp.50-55
    • /
    • 2015
  • 본 논문에서는 야간 영상 감시(night-time video surveillance)에 특화된 GMM(Gausssian mixture model)기반의 배경 모델링(background modeling)을 이용한 배경 차분(background subtraction)방법을 제안한다. 야간 영상에서는 낮 영상에 비해 배경과 객체의 구분이 뚜렷하지 않아 매우 흡사한 픽셀 값들을 이용하여 배경을 분리해야 한다. 이러한 문제점을 해결하기 위해 전처리 단계에서 조정된 범위의 히스토그램 스트레칭을 이용하여 입력 픽셀 값을 배경 모델링에 이로운 픽셀 값으로 변경해준다. 조정된 픽셀 값을 이용하여 가장 이상적인 배경을 찾기 위해 픽셀 단위로 GMM기반의 배경 모델링 방법을 적용한다. GMM을 기반으로 한 배경모델링 방법에서는 새로운 픽셀 값이 입력되었을 때 어떤 가우시안에도 속하지 않는다면 가장 낮은 가중치를 가진 가우시안 분포를 제거함으로써 이전의 축적된 배경의 정보를 무시하는 결과를 낳게 된다. 따라서 본 논문에서는 낮은 가중치의 가우시안을 제거하는 대신 기존 가우시안의 평균과 입력된 픽셀 값의 차를 이용하여 새로운 평균에 적용함으로써 기존의 쌓여진 정보를 고려한다. 실험결과 제안된 배경 모델링 방법이 기존 방법의 이점을 유지하면서 야간 영상 감지에 특화된 배경 차분 결과를 보였다.

A PROCESSOR SHARING MODEL FOR COMMUNICATION SYSTEMS

  • Lim, Jong Seul;Park, Chul Guen;Ahn, Seong Joon;Lee, Seoyoung
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.511-525
    • /
    • 2004
  • we model communication and computer systems that process interactive and several and several types of background jobs. The scheduling policy in use is to share the processor among all interactive jobs and, at most, one background job of each type at a time according to the process sharing discipline. Background jobs of each type are served on a first-come-first-served basis. Such scheduling policy is called Processor Sharing with Background jobs (PSBJ). In fact, the PSBJ policy is commonly used on many communication and computer systems that allow interactive usage of the systems and process certain jobs in a background mode. In this paper, the stability conditions for the PSBJ policy are given and proved. Since an exact analysis of the policy seems to be very difficult, an approximate analytic model is proposed to obtain the average job sojourn times. The model requires the solution of a set of nonlinear equations, for which an iterative algorithm is given and its convergence is proved. Our results reveal that the model provides excellent estimates of average sojourn times for both interactive and background jobs with a few percent of errors in most of the cases considered.

Smooth Background Model(SBM)을 이용한 가중 키리히호프 중합전 심도구조보정 (Weighted Kirchhoff Prestack Depth Migration using Smooth Background Model)

  • 고승원;양승진;신창수
    • 지구물리와물리탐사
    • /
    • 제4권3호
    • /
    • pp.84-88
    • /
    • 2001
  • 탄성파 구조보정에서 초기속도모델과 실제지층속도와의 오차는 심각한 이미지 왜곡을 초래할 수 있다. 따라서, 초기속도 모델의 설정은 성공적인 구조보정을 위한 중요한 요소 중의 하나이다. 초기속도모델로서 단순지층 모델을 적용할 경우, 속도 차가 큰 지층경계면에서는 기존의 주시계산 방법으로는 정확한 주시를 계산할 수 없다. 또한 실제 지하내부가 갖는 선형적 속도변화를 적절히 표현할 수 없다. 본 연구에서 초기모델로 적용한 Smooth Background Model(이하 SBM)은 깊이에 따라 지층속도가 선형적으로 변화하는 모델로서 지하내부의 특성을 적절히 표현할 수 있고, Vidale 방법과 같은 주시계산 알고리즘을 적절히 적용할 수 있다. 본 연구에서는 중합전 구조보정을 위해 키리히호프 연산자를 사용하였으며 모델링을 통해 얻은 절대 진폭값을 가중치로 적용하므로써 초기 모델에 대한 진진폭을 고려하였다. 구조보정을 위한 초기모델은 중합속도를 이용하여 결정하였고, 이를 실제자료에 적용하여 보았다.

  • PDF

정보검색 기법과 동적 보간 계수를 이용한 N-gram 언어모델의 적응 (N- gram Adaptation Using Information Retrieval and Dynamic Interpolation Coefficient)

  • 최준기;오영환
    • 대한음성학회지:말소리
    • /
    • 제56호
    • /
    • pp.207-223
    • /
    • 2005
  • The goal of language model adaptation is to improve the background language model with a relatively small adaptation corpus. This study presents a language model adaptation technique where additional text data for the adaptation do not exist. We propose the information retrieval (IR) technique with N-gram language modeling to collect the adaptation corpus from baseline text data. We also propose to use a dynamic language model interpolation coefficient to combine the background language model and the adapted language model. The interpolation coefficient is estimated from the word hypotheses obtained by segmenting the input speech data reserved for held-out validation data. This allows the final adapted model to improve the performance of the background model consistently The proposed approach reduces the word error rate by $13.6\%$ relative to baseline 4-gram for two-hour broadcast news speech recognition.

  • PDF

배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델 (An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction)

  • 김영주
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.187-194
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명 조건의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델 (GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 제안되어 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 a(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값의 분산 등을 이용하여 학습률 a값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF