본 논문은 인공신경망을 이용한 새로운 매팅 기법을 제안한다. 매팅이란 영상에서 객체의 불투명도를 추정하는 기술이다. 매팅 기법을 이용하면 객체를 자연스럽게 추출할 수 있다. 먼저 trimap을 이용하여 영상을 배경 영역, 전경 영역, 미지 영역으로 구분한다. 배경 영역과 전경 영역의 정보를 이용하여 미지 영역 화소의 불투명도를 추정한다. 제안하는 알고리즘은 배경 영역과 전경 영역의 정보를 SOM을 이용하여 학습하고 그 결과를 이용하여 미지 영역의 각 화소의 불투명도를 추정한다. 본 논문에서는 배경 영역과 전경 영역의 정보를 학습하는 방법에 따라서 전역적 SOM matting과 지역적 SOM matting으로 구별한다. 제안하는 알고리즘의 성능을 평가하기 위하여 영상에 적용해보았다. 이를 통해 제안하는 알고리즘이 객체를 영상에서 분리 가능함을 확인 할 수 있다.
본 논문에서는 시간에 따라 변하는 잡음 환경에 강인한 음성 인식을 위해 효과적인 특징 보상 기법을 제안한다. 제안하는 기법에서는 기존의 Variational 모델 생성 기법의 모델 정확도를 향상시키고자 PCA를 도입한다. 제안된 기법은 다중 모델을 사용하는 PCGMM 기반의 특징 보상에 적용된다. 실험 결과는 제안한 PCA 기반의 Variational 모델 생성 기법이 배경 음악 환경의 다양한 SNR 조건에서 기존의 전처리 기법에 비하여 음성 인식 성능을 향상 시키는데 우수함을 입증한다. 제안한 모델 생성 기법이 기존의 Variational 모델 생성 방법에 비해 배경 음악 환경에서 평균 12.14%의 상대적 인식 성능 향상률을 나타낸다.
본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.
In this paper an improved morphological algorithm for directional defect detection is proposed, where the defect is parallel to the texture image. The algorithm is based on obtaining the background image while removing the defect by comparing every directional morphological result with max or min except that of defect. The defect can of defect and the background image. For a computer simulation, it is shown that the proposed method has better performance than the conventional algorithm.
A new approach to impulsive noise rejection and background normalization of digitized electrocardiogram signals is presented using mathematical morphological operators that incoporate the shape information of a signal. A brief introduction to these nonlinear signal processing operators, as well as detailed description of the new algorithm, is presented. Empirical results show that the new algorithm has good performance in impulsive noise rejection and background normalization.
This paper proposes a face identification algorithm, robust on lighting condition and complex background. The proposed method estimates facial area under bad light condition by expanding face color boundaries and then finds a lip using the templates for lips. Then the eyes are found using their topological relationship with the long and short axes of lip area. The experimental results have shown that the proposed algorithm is robust on lighting conditions and complex background.
Image-based rendering is an approach to generate realistic images in real-time without modeling explicit 3D geometry, Especially, TIP(Tour Into the Picture) is preferred for its simplicity in constructing 3D background scene. However, TP has a limitation that a viewpoint cannot go far from the origin of the TIP for the lack of geometrical information. in this paper, we propose a method to interpolating the TIP images to generate smooth and realistic navigation. We construct multiple TIP models in a wide area of the virtual environment. Then we interpolate foreground objects and background object respectively to generate smooth navigation results.
본 논문은 하나의 움직이는 카메라와 수시로 바뀌는 배경을 가진 환경 하에서 파라미터를 사용하지 않는 외곽선을 사용한 움직이는 물체의 외곽을 추적하고, 추적된 물체의 외곽을 다른 장면에서 가져온 배경으로 대체하여 추적물체를 제거하는 기법을 제안한다. 먼저 캐니 에지 이미지(map)를 수정하여 만들어 내고, 이들 에지들의 강도에 대한 정보를 LOD (Level-of-Detail)로 만든 결과 LOD 캐니 에지 이미지(map)을 생성한다. 이들 LOD 캐니 에지 이미지 화소에 대해 그래프를 사용한 경로 설정 방법을 사용한다. 이 작업으로 결정되는 외곽선을 이용하여 추적대상이 되는 물체를 다른 이미지에서부터 얻은 배경이미지로 대체함으로써 제거한다. 우리의 물체 추적을 위한 방법은 LOD 수정된 캐니에지 이미지를 위주로 이루어진다. 추가 에지 정보를 얻기 위해 LOD 계층에 따라서 자세한 외곽선 정보를 얻는다. 우리의 경로 설정 방법은 보다 강한 이미지 차에서 만들어진 에지 화소를 선호하는 것이다. 이 방법은 이전 외곽선 정보를 최소한으로 참고하기 때문에, 이전 외곽선 정보를 새로운 외곽선을 생성하는데 있어서 가중치를 사용 이전 외곽선을 포함시키는 방법에 비해 탁월하다. 외곽선 추적 후 추적 물체를 배경으로 대체하는데, 첫 이미지 배경은 이후에 나타나는 이미지로부터 추적 물체에 대해 가려진 배경정보를 가져오는 카메라 운동법이라 부르는 방법에 의하여 계산되어진다. 첫 프레임을 위한 배경 계산이 완료되면, 다음 이미지의 배경 계산은 첫 프레임의 배경에 의존한다. 본 논문에서 제시된 방법을 사용할 경우, 추적 물체의 형상 변화가 극심하지 않고, 카메라의 움직임이 매우 빠르지 않을 경우 성공적으로 추적할 수 있었다.
본 논문에서는 동영상에서 주요 객체를 추출하여 기존의 배경을 임의의 배경으로 교체하는 알고리즘을 제안한다. 제안된 기법은 이동 통신 화상전화기 및 영상전달 시스템등을 사용한 화상 전송함시 개인의 프라이버시를 보호하고, 배경을 제거함으로써 실제 전송할 데이터의 양을 줄일 수도 있을 뿐만 아니라, 현재배경을 임의의 배경으로 바꾸는 등의 여러 용도로 사용가능하다. 영상처리는 대용량의 데이터를 처리하기 때문에 많은 메모리와 시간 등의 자원을 사용하게 된다. 이는 특히 자원이 제한된 이동통신기기에서 문제가 된다. 실험에서 일반적으로 주요 객체의 움직임의 범위가 크지 않다는 점에 근거하여 검색의 범위를 이전 윤곽선정보의 주변으로 제한함으로써 영상처리에서 걸리는 시간과 자원을 줄일 수 있었다. 구체적으로는 동영상의 초기영상에서 윤곽선 정보를 이용하여 후보 객체영역을 추출하였고, 추출한 영역을 기준으로 다음 영상과 현재 영상과의 차영상을 구하여 움직이는 객체를 추적하는데 이용하였으며, 선택된 영역에서 윤곽선을 구하여 객체영역을 찾는데 이용하였다 이를 통하여 주요 객체와 배경을 효율적으로 분리할 수 있었으며, 사용자가 선택한 임의의 배경으로 대체할 수 있었다.
동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.