• Title/Summary/Keyword: Backflow of exhaust gas

Search Result 7, Processing Time 0.016 seconds

Range Hood Backflow Reduction Device Development (레인지후드 역류 저감 시스템 개발)

  • LEE, W.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.906-911
    • /
    • 2018
  • This study was conducted to develop an efficient high performance range hood and exhaust system for quickly discharging flue gas, smoke, and odor generated when food is cooked in the kitchen, and the following results were obtained. Reverse current rate of 1.53 m/s of the range exhaust system was improved to achieve the inlet speed of 0.3 m/s or less. An efficient range system was constructed by improving the hood exhaust flow by 5.6 m/s at the existing 4.5 m/s.

Effect of Value Timing on Residual Gas Fraction and Combustion Characteristics at Part Load Condition in an SI Engine (가솔린 엔진의 밸브타이밍 변화가 부분부하 조건에서 잔류가스량 및 연소특성에 미치는 영향)

  • 김철수;송해박;이종화;유재석;조한승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2000
  • In-cylinde flow and mixture formation are key contributors to both idle stability and combustion stability at part load condition in SI engine. The real time measurements of air-fuel ration and in- cylinder residual gas fraction are particularly important to obtain a better understanding of the mechanisms for combustion and emissions especially during cold start and throttle transient condition. This paper reports the cycle resolved measurements of residual gas fraction and equivalence ration near speak plug with value timing change and their effects on combustion characteristics at part load. The results showed that the effect of intake value opening on the residual gas fraction was smaller than that of exhaust valve closing because of the decreases of exhaust gas reverse flow from exhaust port. The variation of equivalence ratio near spark plug increased with the increase of value overlap and it closely related with heat release rate and combustion stability

  • PDF

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

NUMERICAL ANALYSIS OF A SAMPLING MODULE FOR A FAST RESPONSE EXHAUST GAS ANALYZER

  • Kim, W.S.;Lee, J.H.;Yoo, J.S.;Rhee, B.O.;Park, J.I.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • The engine behavior in a transient condition is important to not only emission regulations but also fuel economy. A fast response gas analyzer can be a useful tool to investigate exhaust gas in a transient operation. It should be designed to analyze gas concentration with a short time constant by a fast sampling module and an appropriate measuring method for each emission element. In this study, a new fast sampling module is introduced and flow analysis is performed by numerical simulation. The analysis has shown the proper operating condition and the sensitivity of the module for practical application. Calculated flow to the sampling module has $0.5{\sim}4%$ error, while backflow toward the expansion tube is expected when pressure in CP (Constant Pressure) chamber is over 0.6 bar. For a stable supply of flow to the optical cell, sample gas pressure should be in the range, $0.35{\sim}1.90$ bar, when the pressure in the CP camber and the optical cell are 0.2 bar and 0.158 bar, respectively.

Experimental and Numerical Study on Flow Characteristics of a Common Exhaust System for Multiple SOFCs (SOFC용 복합 배기 시스템 유동 특성에 관한 실험 및 수치해석적 연구)

  • DAEWOONG JUNG;JONGHYUK YOON;HYOUNGWOON SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.657-666
    • /
    • 2023
  • In this study, experiments and numerical analysis were conducted to investigate the exhaust gas flow in a common exhaust system of multiple solid oxide fuel cells. The system was fabricated based on KGS code and operated within a pressure range of 0.12 kPa, with flow rates ranging from 79.1 to 103.4 L/min. Numerical modeling was validated with a mean absolute error of 3.8% for pressure results. The study assessed the impact of changes in area ratio and emergency stops on pressure distribution, velocity vectors, and wall shear stress. The findings revealed no significant factors causing high differential pressure or backflow.

Numerical Analysis of Flow Characteristic of Residual Gas due to Changes in Valve Timings during an Idle Operation in an SI Engine (가솔린 기관의 공회전 시 밸브 타이밍 변경에 따른 잔류가스 유동 변화에 관한 해석적 연구)

  • Lee, Joon-Ho;Kim, Duk-Sang;Baik, Doo-Sung;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.50-56
    • /
    • 2006
  • Residual gas fraction in a combustion process is very crucial to improve combustion and cyclic variations. Especially, the residual gas fraction is strongly affected by backflow of the residual gas during the valve overlap period in an idle operation. Therefore, it is one of the most interesting that valve timings can affect flow characteristics of gas exchange process, especially during idle operation. This analysis investigates residual gas fraction with respect to valve timing changes which is critical for combustion efficiency and engine performance. Flow characteristics of residual gas by changing intake and exhaust valve timing are calculated by CFD methodology during an idle operation in an SI engine. It is analyzed that retarded EVO and advanced IVO results in the increase of valve overlap period and consequently, residual gas fraction. Futhermore, changes in IVO have stronger effects on variation of residual gas fraction.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.