• Title/Summary/Keyword: Backfill material

Search Result 207, Processing Time 0.024 seconds

Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite

  • Fulin Wang;Min Zhou;Cheng Chen;Zhengping Yuan;Xinyang Geng;Shijiao Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.523-529
    • /
    • 2023
  • Cemented uranium tailings backfill created from alkali-activated slag (CUTB) is an effective method of disposing of uranium tailings. Using some environmental functional minerals with ion exchange, adsorption, and solidification abilities as backfill modified materials may improve the leaching resistance of the CUTB. Natural zeolite, which has good ion exchange and adsorption characteristics, is selected as the backfill modified material, and it is added to the backfill materials with cementitious material proportions of 4%, 8%, 12%, and 16% to prepare CUTB mixtures with environmental functional minerals. After the addition of natural zeolite, the uniaxial compressive strength (UCS) of the CUTB decreases, but the leaching resistance of the CUTB increases. When the natural zeolite content is 12%, the UCS reaches the minimum value of 8.95 MPa, and the concentration of uranium in the leaching solution is 0.28-8.07 mg/L, the leaching rate R42 is 9.61×10-7 cm/d, and cumulative leaching fraction P42 is 8.53×10-4 cm, which shows that the alkali-activated slag cementitious material has a good curing effect on the CUTB, and the addition of environmental functional minerals helps to further improve the leaching resistance of the CUTB, but it reduces the UCS to an extent.

Thermal Resistance Characteristics of the Backfill Material with Bottom Ash (저회 되메움재의 열저항 특성)

  • Jung, Hyuksang;Cho, Sam-Deok;Kim, Ju-Hyong;Park, Jongsik;Kong, Jin-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • This paper deals with the result of thermal resistance test with backfill materials as bottom ash by using backfill material. Bottom ash, one of coal ashes, can be reused to replace sand because of its similar engineering properties. But without considering the thermal property, the abuse of bottom ash resulted in damage for existing structures. To investigate the thermal conductivity of bottom ash, laboratory tests for thermal resistance of that were carried out in this study. Thermal properties of bottom ash was compared with those of in-situ soil, sand, backfill material which can be applied as filling material. The tests were classified by water contents defined as the major influence factor. The beneficial use method of bottom ash was suggested as backfilling material.

Thermal Resistant Characteristics of Accelerated Flowable Backfill Materials on Water Content (함수비에 따른 유동성 뒤채움재의 열저항 특성)

  • Oh, Gi-Dae;Kim, Dae-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1258-1263
    • /
    • 2010
  • Backfill material of buried electrical transmission cable should dissipate the heat as rapidly as it is generated, or high temperatures will lead thermal runaway. These problems could raise thermal resistance and recude trasmission efficiency. So Backfill material of buried electrical transmission cable should have not only structual safty but good thermal property. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(controlled low strength materials) for water content.

  • PDF

Application of Weathered Granite Soils as Backfill Material of Reinforced Earth Structure (보강토구조물 뒤채움 재료로서 화장풍화토의 적용성)

  • 김상규;이은수
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 1996
  • The current practice in construction of reinforced earth retaining walls is to use a granular soil for the backfill material. When the material is available in site, the construetion cost can be remarkably reduced. As the weathered granite soils are abundant and widely distributed throughout the Korean peninsula: whether they are suitable or not as the backfill material is considered to be the most important key in economic construction of the wall. This paper investigates the grain size distribution of the weathered soils which locate at many places throughout the nation and then examines limitation of their use based on the specifications of different countries. The variaton of shear strength with both different fine contents and saturation is also investigated. It is known that the grain size distribution of most weathered soils are not satisfied with the general requirement. However their use is possible in wide range when the backfill keeps in unsaturated condition using good drainage facilities and 1 or pervious reinforcements.

  • PDF

A Study on the Recycling of Coal Ash as Fill Materials (석탄회 자원의 채움재로서의 활용에 관한 연구)

  • 천병식;고용일;송경율;이준기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.513-520
    • /
    • 1999
  • 20 million tons of coal ash has been produced in Korea annually. This causes the environmental problems and the cost of land for ash pond. However the amount of coal ash for recycling is small because of the low level of recycling technology and the ignorance. As the coal ash has the significant engineering properties, it can be utilized as soft ground stabilizer, backfill materials and so forth. The purpose of this paper is to summarize some of the recycling methods of coal ash. One is structural backfill materials, the other is flowable fill. Optimal mixture ratio(fly ash : bottom ash) is determined for structural backfill materials and the model test is performed. The model test accompanied with physical tests were executed for identifying that the flowable fly ash can be used as fill materials such as trench back filling.

  • PDF

A Study on the Thermal Resistance Characteristics of Backfill Concrete for Underground Power Cables (지중송전 케이블 되메움 콘크리트의 열 저항 특성에 관한 연구)

  • 정원섭;권기주;김대홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.397-402
    • /
    • 2001
  • Due to the recent economic growth and the subsequent increase in demand of electricity, the construction of underground transmission line is also on the rise. Especially, in the metropolitan area, we have much obstruction in laying the line to the central district because of difficulties in procurement of construction land and the increase in the construction cost. Therefore, the necessity of increasing the capacity of transmission line has been suggested. In order to increase the capacity, the electric voltage and current intensity in size-limited lines should be also increased. But, eventually, it leads to the generation of unnecessary heat and the heat radiates through insulation cables and backfill concrete. So we need to develop the material that has good heat radiation characteristics. In this study, we developed and tested backfill concrete that can be a substitute for previously used backfill sand.

  • PDF

Estimation of field application for the PHC pile backfill recycling In-site soil (현장 발생토를 재활용한 PHC파일 채움재의 현장 적용성 평가)

  • Choi, Hee-Bok;Noh, Chang-Suck;Han, Byung-Kwon;Lee, Hong-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.63-66
    • /
    • 2011
  • The aim of this study is to estimate the field applicability of PBFM to replace in-site soil with pile backfill used to replace the existing cement paste. As results, the flowability, segregation and bleeding, and bond strength of PBFM was a good performance than that of the existing cement paste. But the skin friction of pile by Pile Driving Analyzer (PDA) and compressive strength was slightly decreased than that of the existing cement paste. However, as pile backfill materials, and in terms of economics and environment, the applicability of PBFM is considered very effective.

  • PDF

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

A Correlation to Predict the Thermal Conductivity of Buffer and Backfill Material for a High-Level Waste Repository (고준위폐기물처분장 완충재 및 뒷채움재의 열전도도 예측을 위한 관계식)

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • In the present design concept of a high-level waste repository, the bentonite and bentonite-sand mixture are considered as the buffer and backfill material. For the Kyungju bentonite which is a candidate material, the thermal conductivities of compacted bentonite and bentonite-sand mixture were measured. A correlation has been proposed to predict the thermal conductivity of the Kyungju bentonite and the bentonite-sand mixture as a function of the dry density, the water content and the sand fraction. The proposed correlation can predict the thermal conductivity with a difference less than 10% under the experimental conditions.

Assessment on Applicability of Recycled Aggregates for Backfill Materials of Underground Transmission Lines Based on Field Demonstration Tests (지중 송전관로 되메움용 순환골재의 현장실증시험을 통한 적용성 평가)

  • Kang, Sung-Chur;Lee, Kang-Ryel;Ahn, Tae-Bong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.72-83
    • /
    • 2015
  • Underground transmission lines always generate heat and transmit heat through surrounding backfill materials. Therefore, in the design of power lines it becomes a very crucial factor to transfer heat effectively into the neighbouring soils. In this study, in order to enhance field applicability of recycled aggregates for backfill material of transmission lines, quality criteria and construction criteria were proposed, and thermal stability of power lines through field demonstration tests were analyzed. In the field tests, two types of recycled aggregates and sand which is currently used for backfilling were compared in terms of thermal behaviour. Test results showed that recycled aggregates represented similar trends with sand in temperature and moisture content corresponding to time lapse and distance from the heat source. Consequently, recycled aggregates can be utilized for backfill materials of underground transmission lines as a substitute material of sands.