• Title/Summary/Keyword: Backfill Grouting

Search Result 14, Processing Time 0.024 seconds

Investigation of the Lining Load Induced by Backfill and Consolidation Grouting (배면 및 압밀그라우팅에 의한 터널 라이닝 하중 연구)

  • 박동순;김학준;김완영
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.445-456
    • /
    • 2003
  • Backfill grouting and consolidation grouting are major reinforcing methods that enhance the stability of tunnel by filling the gap between the tunnel lining and the ground and increasing the stiffness of the ground. However, the effect of the grouting on the tunnel lining is not well established. Field measurements such as pressuremeter test, Lugeon test, and lining instruments were peformed to analyze the grouting effect on the tunnel lining for a waterway tunnel. The elastic modulus was increased up to 5 times than that of original rock mass due to consolidation grouting. This study shows that only 10% of grout pressure was acting on the back face of the tunnel lining. The final results are expected to be used for the design of the concrete lining.

Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting (터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.191-194
    • /
    • 2008
  • The cavity behind the tunnel lining, caused by overbrake, might be cause a severe instability during tunnel construction. So backfill grouting is essentially required. GPR(Ground penetrating Radar) is widely used to identify the position and size of the cavity and to verify the effect of the backfill grouting. In this study, GPR survey with 450 MHz antenna was implied to access the effect of the backfill grouting before and after the work to the crown part of ○○ tunnel in Seoul respectively. The result of GPR survey conducted before the backfill, was revealed that cavities behind the lining were existed in the areas of 8 spans. Finally, from the GPR survey implied after backfilling, it was turned out that backfill grouting was successfully carried out. Also, GPR survey was ascertained the better contact between lining and rock base at arrangement of bar span.

  • PDF

A study on numerical modeling method considering gap parameter and backfill grouting of the shield TBM tunnel (쉴드 TBM 터널의 gap parameter와 뒤채움재를 고려한 수치모델링 방법에 대한 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Backfill grouting and realistic convergence distribution were not properly considered in previous studies on 2D numerical analysis of a shield TBM tunnel. In this study, a modeling method was suggested to cope with this problem by considering a realistic convergence distribution and proper properties of backfill grouting. To this end, the influence of gap parameter and depth of rock cover on volume loss and composed of ground volume loss around tunnel excavation and surface volume loss were analyzed with a single layer of weathered soil. As a result, most of surface settlements were occurred immediately after excavation. Additional, as depth of rock cover and gap parameter increased, the influence range of surface settlement curves obtained from 2D numerical analyses became broader than a suggested theoretical equation. Therefore, it is inferred that gap parameter should be applied based on load distribution ratio and the property of backfill grouting properly considered for the estimation of the precise behavior of a shield TBM tunnel in 2D numerical analysis.

Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground (사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Chang, Seokbue;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.375-392
    • /
    • 2018
  • The shield TBM method is widely adopted for tunneling works in urban area because it has more beneficial ways to control settlement at ground surface than conventional mined tunneling. In the shield tunneling, backfill grouting at tail void is crucial because it is supposed not only to restraint ground deformation around tail void during excavation but also to compensate precedent ground settlement by pushing up the ground with highly pressurized grout. However, the tail void grouting has been found to be ineffective for settlement compensation particularly in sandy ground, which might be caused by complicate interaction between ground and tail void grouting. In this paper, the effects of tail void grouting on behavior of ground in shield TBM tunneling were investigated based on 3-dimensional finite element analyses. The results of numerical analyses indicated that backfill grouting actually reduces settlement by degrading settlement increasing rate in excavation, which means decrease of volume loss. Meanwhile, the grouting could not contribute to compensate the precedent settlement, because reduction of volume loss by grouting was found to be counterbalanced by volume change of ground.

Construction Plan by Large Diameter Shield TBM Method and Analysis of Deformation on Site Under Soo-Young River (대구경 Shield TBM공법에 의한 수영강 하저터널 시공계획 및 시공중 발생되는 거동의 공학적 분석)

  • 윤현돈;황규호;최기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.25-32
    • /
    • 2001
  • Doosan Construction & Engineering Co., Ltd is building a railway tunnel beneath the Soo-Young River connecting MinLak Station and Centum City Station, a section 230, subway line 2, Pusan City, Korea. When completed the tunnel will have a finished inner diameter of 6.5m(21.311) throughout its total length of 840m(420m = 0.52 miles, Two Single Track Tunnel : 420m+420m). The ground profile of the face toward shield machine is composed of multi layers, silty clay, clayey gravel, soft rock etc. This research paper is to predict ground deformation and variation of stresses around tunnel using Hyperbolic model, and to reflect the works on the next shield tunneling project. And this research paper is analyzed data of measuring instrument (such as settlement gauge, inclinometer, Multiple extensometer, etc.) which is installed along tunnel line for safety of tunnel. For calculations, the finite difference Method is applied. Backfill grouting material is supposed to have instantly strength of 10kg/$\textrm{cm}^2$ above, although its strength is available after 24 hours passed.

  • PDF

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground (쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압)

  • Kim, Kiseok;Oh, Ju-Young;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.433-452
    • /
    • 2018
  • The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

A study on Gap Parameter and Influence Area of Ground Settlement Using Back Analysis Constructed by Shield TBM with Shallow Depth (천층터널 쉴드TBM에서 역해석을 이용한 Gap Parameter 및 지표침하 영향범위에 대한 연구)

  • Koh, Sung-Yil;Kwon, Sung-Ju;Hwang, Chang-Hee;Kim, Sang-In;Choo, Seok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1509-1518
    • /
    • 2011
  • Shield TBM tunneling method has been getting the spotlight for urban tunneling. It can be minimized the civil complaint during construction and possible safe tunneling. But the settlement has occurred inevitably due to characteristics of shield TBM equipment. For this reason, the civil complaint can occur in urban areas when tunnel with shallow depth passes through neighboring building or residential area. In this study, the occurrence factors of settlement according to shield TBM tunneling and the tendency of ground settlement by strata condition had analyzed. It is suggested that the practical settlement estimation method and minimizing method of ground settlement under simultaneous backfill grouting condition through measurement results and back analysis data using gap parameter.

  • PDF

Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock (화강풍화대를 통과하는 슬러리 TBM의 체적손실 산정에 대한 사례 연구)

  • Park, Hyunku;Oh, Ju-Young;Chang, Seokbue;Lee, Seungbok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2016
  • This paper presents a case study on the ground settlement and volume loss estimation for slurry pressure balanced shield TBM tunnelling in weathered zone of granite rock. Settlement at each stage of shield tunnelling was analyzed and the volume losses and settlement trough factors were estimated from observations. In addition, using the existing volume loss evaluation method in literature, volume losses were estimated considering ground properties and actual driving parameters. Most of ground settlement occurred during passage of shield skin passage and after backfill grouting, and the measured total volume loss and trough curves appeared to coincide with literature. Shield and tail loss obtained from field measurement were found to be around 90% and 60% of the predictions, where tail loss indicated larger deviation than shield loss.

A study on the shallow tunneling method using cover structure (복개 구조물을 이용한 저토피 계곡부 터널의 통과방안에 대한 연구)

  • Chung, Yong-Jin;Nam, Hyun-Woo;Choi, Ho-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.564-569
    • /
    • 2005
  • Usually, Steel pipe grouting method or cut and cover method has been applied to tunnel with very shallow overburden or it is situated in valley. However, in case of lack of overburden height to reinforcement tunnel crown which is very difficult to construction. Also, application of cut and cover method that do not consider surrounding site condition causes popular enmity generation and environmental damage. It is the best alternative method that reduces the amount of excavated soil and excavate tunnel under ground to solve these problems. The tunneling method using cover structure which is to prevent a tunnel from collapse because this method can be reduce excavation area and construct tunnel under ground after set a cover structure and backfill ground. In this study, to know more effective structure type, comparative analysis was performed to behavior characters of slab and arch type construction that can be used to cover structure. Also a 2D and 3D numerical analysis have been performed to verify the stability of ground during excavation. As the result, the tunneling method using cover structure that it can be good alternative method for tunnel with shallow overburden and it through valley

  • PDF