• 제목/요약/키워드: Back-Propagation technique

검색결과 206건 처리시간 0.026초

신경회로망을 이용한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor by Neural Network)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

신경회로망을 이용한 직류전동기의 센서리스 속도제어 (Sensorless Speed Control of Direct Current Motor by Neural Network)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

FNN과 ANN을 이용한 유도전동기의 속도 제어 및 추정 (Estimation and Control of Speed of Induction Motor using FNN and ANN)

  • 이정철;박기태;정동화
    • 전자공학회논문지SC
    • /
    • 제42권6호
    • /
    • pp.77-82
    • /
    • 2005
  • 본 논문은 FNN과 ANN 제어기를 이용한 유도전동기의 속도 제어 및 추정을 제시한다. 먼저, PI 제어기에서 나타나는 문제점을 해결하기 위하여 퍼지제어와 신경회로망을 혼합 적용한 FN 제어기를 설계한다. 퍼지제어기의 강인성 제어와 신경회로망의 고도의 적응제어의 장점들을 접목한다. 다음은 ANN을 이용하여 유도전동기 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 유도전동기 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 유도전동기의 속도를 제어한다. 본 연구에서 제시한 FNN과 ANN의 제어특성 및 추정성능을 분석하고 그 결과를 제시한다.

AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor Dirve with AFLC)

  • 정동화;남수명
    • 조명전기설비학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2006
  • 본 논문에서는 유도전동기의 벡터제어를 위한 ANN 센서리스 제어와 속도제어를 위한 AFLC를 제안하였다. AFLC 설계는 적응 메카니즘을 통해 퍼지 룰 베이스의 수정자를 갱신하여 실행할 수 있고 유도 전동기의 속도 추정을 위한 ANN 센서리스 제어는 BPA를 통해 수행하였다. 유도전동기의 지령속도와 실제속도는 BPA를 통해 그 오차를 줄일 수 있고, 이러한 알고리즘은 다른 전동기 드라이브에 적용이 용이하다. 본 논문에서 제시한 AFLC 및 ANN 제어의 응답특성을 분석하고 그 결과를 제시한다.

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

SPMSM 드라이브의 속도제어 및 추정을 위한 퍼지-뉴로 제어 (Fuzzy-Neural Control for Speed Control and estimation of SPMSM drive)

  • 남수명;이정철;이홍균;이영실;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1251-1253
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neuro-fuzzy control(NFC) and estimation of speed using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

저면산란 초음파 신호 및 신경회로망을 이용한 균열크기 결정 (Crack Size Determination Through Neural Network Using Back Scattered Ultrasonic Signal)

  • 이준현;최상우
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.52-61
    • /
    • 2000
  • The role of quantitative nondestructive evaluation of defects is becoming more important to assure the reliability and the safety of structure, which can eventually be used for residual life evaluation of structure on the basis of fracture mechanics approach. Although ultrasonic technique is one of the most widely used techniques for application of practical field test among the various nondestructive evaluation technique, there are still some problems to be solved in effective extraction and classification of ultrasonic signal from their noisy ultrasonic waveforms. Therefore, crack size determination through a neural network based on the back-propagation algorithm using back-scattered ultrasonic signals is established in this study. For this purpose, aluminum plate containing vertical or inclined surface breaking crack with different crack length was used to receive the back-scattered ultrasonic signals by pulse echo method. Some features extracted from these signals and sizes of cracks were used to train neural network and the neural network's output of the crack size are compared with the true answer.

LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어 (High Performance Speed Control of IPMSM with LM-FNN Controller)

  • 남수명;최정식;정동화
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2006
  • 본 논문에서는 LM-FNN(learning Mechanism-Fuzzy Neural Network) 제어기를 이용하여 IPMSM 드라이브의 고성능 속도를 제어한다. 고성능제어를 위하여 신경회로망과 퍼지제어를 혼합 적용한 FNN을 설계한고 더욱 성능을 개선하기 위하여 학습 메카니즘을 이용하여 FNN 제어기의 파라미터를 갱신시킨다. 그리고 ANN(Artificial Neural Network)을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 IPMSM의 속도를 제어한다. 본 연구에서 제시한 LM-FNN과 ANN 제어기의 제어특성과 추정성능을 분석하고 그 결과를 제시한다.

음선 역전파 기반의 선박 위치 추정 (Ray backpropagation-based ship localization)

  • 조성일;변기훈;변성훈;김재수
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.196-205
    • /
    • 2018
  • 본 논문은 선박소음 데이터에 음선 역전파 기법을 적용하여 수동 선박 위치 추정 알고리듬을 제시한다. 기존의 방법 [S. H. Abadi, D. Rouseff and D. R. Dowling, J. Acoust. Soc. Am. 131, 2599-2610 (2012)]은 음선 기반 블라인드 디컨벌루션 및 음선 역전파 기법을 활용하여 배열의 기울기가 없는 근거리 환경에서 음원의 위치를 추정하였다. 하지만 위 방법은 배열의 기울기에 따른 위치 추정 오차가 크게 발생한다는 단점이 존재한다. 이를 극복하기 위해 본 논문에서는 음선 기반 블라인드 디컨벌루션 및 음선 역전파 기법을 사용하되, 배열의 기울기를 보정하여 음원의 위치를 추정할 수 있는 알고리듬을 제안한다. 제안된 알고리듬의 성능은 SAVEX15(Shallow-water Acoustic Variability EXperiment in 2015)해상 실험의 선박소음 데이터를 이용하여 검증하였다.