제빵 공정 중의 굽기 공정을 대상으로 공정에 이용되는 오븐의 예측 제어를 위해 빵의 부피, 색깔, 빵의 온도 변화를 예측할 수 있는 모형을 개발하였다. 첫째, 모형 개발을 위해 필요한 데이터 획득을 위해 영상 처리 장치, K-type 열전쌍 온도 센서 등을 이용하여, 굽기 공정 중의 물리적 변화를 측정하였다. 빵의 상태 변화는 부피가 먼저 증가하고, 부피 증가가 멈춘 후에 색깔의 변화가 수반되었다. 표면 온도는 초기에 급격히 상승한 후에 완만한 상승으로 전환되었고, 내부 온도는 초기에 어느 정도 일정한 온도를 유지하다가, 중반에 급격한 상승을 나타내고, 이후에 다시 일정하게 유지되었다. 부피, 색과, 품온 간의 상호관계는 비선형적인 관계를 가진 것으로 판명되었다. 둘째, 빵의 부피, 색 변화를 예측하기 위해 MLP구조와 BP학습을 이용하여, 30초, 2분 이후의 부피 및 색 변화를 예측할 수 있는 모형과 부피, 색, 오븐 온도를 입력으로 품은 및 표면 온도를 예측할 수 있는 모형을 개발하였다. 개발된 모형의 예측 오차가 각각 4.62%, 7.38%, 1.09%로, 굽기 공정 중의 빵의 상태를 유의성 있게 예측할 수 있었다.
본연구에서는 단순신경망의 구조와 특성을 이해하기 위해 신경회로망의 알고리듬을 이론적으로 분석하고 이를 토대로 프로그램을 설계 실행하여 신경망의 학습과정을 실험하였다. 본연구에서 채택한 학습알고리듬은 3계층구조의 역전파알고리듬이며 신경망의 모형은 단순의료전문가시스템모형을 입력치로 채택하였다. 계층수, 노드수, 학습사이클 수, 학습율, 모멘텀항등의 모수를 입력한 실험의 결과는 입력치에 대한 출력이 기대목표와 거의 일치하였다.
One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).
본 논문에서는 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역 파형역산을 수행하였다. 시간영역 잔여 파동장들을 절대값의 크기에 따라 정렬하여 분류하고, 이를 여러 개의 그룹으로 분리하였다. 분리된 잔여 파동장들은 각 그룹별로 목적함수의 경사 방향을 정규화한 후 평균하기 때문에 통상적인 잔여 파동장에서 작은 크기를 가지는 파동장들을 상대적으로 강조하는 효과가 있고, 이는 파형역산 시 심부구조의 이미지 향상에 도움을 준다. 파형역산은 시간영역에서 분리된 잔여 파동장을 이용하여 주파수영역에서 수행되며, 목적함수의 경사방향은 구조보정에서 많이 쓰이는 역전파 기법을 적용하여 계산된다. 본 연구에서 제안한 알고리듬의 타당성을 확인하기 위하여 SEG/EAGE 암염 모델과 Marmousi 모델을 이용하여 파형역산을 수행하였다. 역산 결과를 통해 제안된 알고리즘이 일반적인 주파수영역 파형역산에 비해 심부구조에 대하여 향상된 결과를 제시함을 확인하였다.
고전적인 Fourier 열전도 방정식은 극저온하에서 또는 아주 짧은 시간동안의 가열시 타당성이 없는 것으로 고려되었다. 이러한 조건하에서는 열전도파의 성질이 지배적이기 때문에 , 수정된 Fourier 법칙에 근거한 쌍곡선형 열전도 방정식이 도입되었다. 열전도에 대한 Fourier 모델과 쌍곡선형 열전도모델이 적분변환법과 함께 Green 함수방법을 이용하여 분되었다. 한쪽 표면에서 주기적인 표면가열을 하는 유한한 평판의 열유속 분포 및 온도분포의 해를 제시하였고 각가의 모델로부터 얻어진 결과를 서로 비교검토하였다. 쌍곡선형 열전도 방정식에서 유도된 열전도파는 매개물을 통해 전파되어 맞은편쪽의 단열표면에서 가열 표면쪽으로 반사하였으나 , 고전적인 Fourier 모델에 의한 열은 열적교란이 매개물의 전체에 걸쳐서 전달된 후 즉각적으로 무한한 속도로 열전파가 발생함을 보여주었다.
조직표본의 실제적인 3차원 구조에 대한 정보를 3차원 조직학이라고 하였다. 무른 성분들이 섞여 있고, 물을 포함 하고 있는 조직 내부의 미세구조의 3차원적 분석을 위해 방사광의 X선을 광원으로 하는 위상대조 미세단층 촬영이 활용되고 있다. 하지만, X선 위상대조영상 분석에서 물을 포함하고 있는 조직에서는 위상대조가 제대로 구현되지 않다는 것을 알게 되었다. 이러한 현상을 해결하기 위해 다양한 방법들을 적용하였으며, 표본을 얼렸을 때 위상대조가 강화된다는 사실을 확인하였다. 방사광 전파위상대조 동결미세단층촬영은 포항가속기연구소 X선 영상빔라인에서 수행하였다. 표본을 동결상태로 유지하면서 $0.18^{\circ}$ 간격으로 $180^{\circ}$ 회전하였으며, 표본을 통과한 X선에 의해 섬광기에 맺힌 영상을 광학렌즈로 확대하여 CCD카메라로 모았다. 각 표본 전체 투사영상을 OCTOPUS 소프트웨어로 재구성하여 2차원 단면영상으로 만들고, Amira 소프트웨어를 이용하여 3차원 영상으로 재구성하였으며, 단면영상에서 각 구조에 대한 구역화와 랜더링 작업을 수행하였다. 물에 의한 위상대조 방해 영향을 줄이기 위해 표본을 얼렸을 때 위상대조는 강화되었으나 동결팽창에 의한 조직변형이 관찰되었다. 표본을 막힌 공간에 넣고 주위를 포매제로 채워 급속냉동 동안 표본이 압박되도록 하였을 때 위상대조의 강화와 동결팽창에 의한 조직변형을 줄일 수 있었다. 결론적으로, 생체조직 내부 미세구조의 비파괴, 고해상도 3차원 영상분석에 있어 조직표본을 동결포매제로 포매 후 급속냉동하고, 방사광에서 방출되는 X선을 광원으로 하는 전파위상대조 동결미세단층촬영법은 효과적인 방법이 될 수 있을 것으로 기대한다.
Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.
가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.
얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.
디지털 멀티미디어 방송(DMB)은 대용량의 멀티미디어 정보를 무선환경의 이동체에 전송하기 위해 제안된 방식이다. 이러한 멀티미디어 서비스를 제공하기 위해 DM시스템은 COFDM 변조방식을 사용하여 다중 경로 페이딩 현상을 극복하고, 동시에 강력한 채널오류 정정 능력을 필요로 한다. DMB 수신기를 위한 비터비 디코더(구속장 7, code rate 1/4)는 가변 부호화된 데이터의 복호화를 수행해야 하고, 방송시스템이므로 실시간으로 동작하기 위해서 효율적인 구조를 가져야 한다. 따라서 DMB 시스템을 위한 비터비 디코더를 구현하기 위해서는 복호화 과정을 고속으로 수행할 수 있는 별도의 전용 하드웨어 모듈을 설계하는 것이 바람직하다. 본 논문에서는 많은 연산량을 효율적으로 줄일 수 있는 결합된 Add-Compare-Select(ACS)와 Path Metric Normalization(PMN)구조를 새롭게 제안하고자 한다. PMN구조에서의 단점인 comparison tree에 의한 임계 경로(critical path)의 문제를 고정치(fixed value)에 의한 선택 알고리즘을 적용함으로써 고속 동작이 가능하게 하였고, ACS구조에서는 분할 기법(decomposition method)과 선계산(pre-computation)을 이용하여 덧셈기, 비교기, 표준화기의 복잡도를 줄일 수 있도록 하였다. 시뮬레이션 결과 펑처드 비터비 디코더는 일반적인 구조를 적용했을 때 보다 면적 $3.78\%$, 전력소모 $12.22\%$, 최대 게이트 지연 $23.80\%$의 감소율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.