• Title/Summary/Keyword: Back stress

Search Result 616, Processing Time 0.029 seconds

Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys (평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향)

  • ;F. Barlat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

A PHOTOELASTIC STRESS ANALYSIS ON THE SUPPOTING STRUCTURE IN THE MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE WITH VARIOUS DESINGS OF BACK-ACT10N CLASPS (하악 유리단 국소의치하에서 back-action 클래스프 설계 변화에 따른 광탄성 응력 분석)

  • Lim Soo-Lyoung;Kay Kee-Sung;Ko Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.379-400
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from the mandibular distal extension removable partial dentures with the mesial or distal placement of the occlusal rest and the mesial or distal connection in the back-action clasp with the five various designs of the back-action clasp, that is, the mesial connection and the distal rest, the distal connection and mesial rest, the mesial connection and mesial rest, the distal connection and the mesial and distal rest, and the mesial connection, and the mesial and distal rest. A photoelastic model was made of the epoxy resin(PC-1) and the hardner(PLH-1) with the acrylic resin teeth used and was coated with the plastic cement-1 at the lingual surface of the model and then five kinds of the removable partial dentures on the photoelastic model were set. A unilateral vertical load of 12.5 kg was applied on the central fossa of the first molar with the use of specially designed loading device and the pattern and distribution of the stress of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained. 1. In the back-action clasp with the mesial connection and mesial rest of the case 3, the effect of the stress distribution was the most favorable. 2. In the back-action clasp with the mesial and distal rest, of the case 4 and 5, the stress distribution was more greatly showed in the terminal abutment. 3. Generally, the stress distribution was more favarable in the mesial connection than in the distal connection. 4. In the back-action clasp with the mesial connection of the case 1, 3 and 5, the stress distribution was the most favorable in the mesial rest.

  • PDF

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

Influence of Constipation in Women in Their Twenties on Low Back Pain (20대 여성들의 변비가 허리통증에 미치는 영향)

  • Yu, Ha-young;Jeong, Yeon-woo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.43-49
    • /
    • 2018
  • Background: In this study, the importance of constipation and back pain was assessed by regression analysis of the effects of stress, dietary habits, and water intake on constipation in women in their twenties and the influence of constipation and body mass index (BMI) To provide basic data. Methods: This study selected 109 having constipation of 120 students attending G University in Gwangju and eating habits, water intake level, stress and BMI. Trigger point at the tip of erector spina was palated with tenderness set in order to examine whether muscle tenderness and actual low back muscle tenderness level were same and left and right parts were measured three times and average of Max values was used. We examined the effect of constipation on low back pain and examined constipation and BMI to determine whether they affected low back pain. Results: There was no significant difference in eating habit although there was a significant difference in the effect of stress and water intake on constipation. Constipation had significant difference in back pain. However, there was no significant difference in BMI, normal weight, overweight, and obesity except for low body weight. Conclusions: This study found that constipation was associated with stress levels, water intake, and back pain. In conclusion, this study suggests basic data to prevent and treat constipation-related back pain, and recommends plenty of water intake, proper exercise and stress management to prevent constipation.

Stress analysis of Multiloop Edgewise Arch Wire with various degree of tip back bend : a study using the finite element method (Multiloop Edgewise Arch Wire의 tip back 정도에 따른 응력 분포에 관한 유한요소법적 연구)

  • Lee, Young-Il;Cha, Kyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.30 no.2 s.79
    • /
    • pp.127-142
    • /
    • 2000
  • This study have been carried out to find out the mechnical effect of Multiloop Edgewise Arch Wire(MEAW) making use of the finite element method. The tip back bend of MEAW taken in this analysis is $5^{\circ},\;10{\circ}\;and\;15{\circ}$. In addition, Class II or up & down elastic is applied to find out stress distribution and their values in PDL. A adult male of normal occlusion was selected to create the models of teeth and PDL. And the model of MEAW was also created using commercial finite element code (ANSYS version 5.2). The MEAW is forcibly engaged with a class II or up & down elastic, to determine the initial stress generated in PDL. Comparing the compressive and tensile stress at each reference-planes, following results are obtained. 1. When a MEAW of $5^{\circ},\;10{\circ}\;15{\circ}$ tip back bend was engaged with Class II or up & down elastic, the distribution of compressive, tensile stress in entire PDL is similar in each case. 2. The values of compressive and tensile stress in PDL is higher in $15{\circ}$ tip back bend case than in $10{\circ}\;or\;15{\circ}$ tip back bend case. 3. In the distal PDL of 1st and 2nd molar, compressive stress appears. The compressive area is more wide and its values is higher in PDL of 2nd molar than those in 1st molar. The compressive area and its values become more wide and higher according to the increase of the tip back bend. 4. The values of compressive stress are comparatively smaIIer in PDL of molars than those in premolars. 5. Comparing class II and up & down elastic case, tensile stress values in anterior teeth PDL are smaller md their distribution is more wide in up & down elastic case than class If elastic case. On another hand, there is no difference in distribution and stress values in PDL of posterior teeth between two cases. 6. Comparing the tensile area in PDL of anterior teeth, tensile stress values are maximum in PDL of canine.

  • PDF

Combined Two-Back Stress Models with Damage Mechanics Incorporated (파손역학이 조합된 이중 후방응력 이동경화 구성방정식 모델)

  • Yun, Su-Jin
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • In the present work, the two-back stress model is proposed and continuum damage mechanics (CDM) is incorporated into the plastic constitutive relation in order to describe the plastic deformation localization and the damage evolution in a deforming continuum body. Coupling between damage mechanics and isothermal rate independent plasticity is performed using the kinematic hardening rule, which in turn is formulated by combining the nonlinear Armstrong-Frederick rule and the Phillips rule. The numerical analyses are carried out within h deformation theory. It is noted that the damage evolution within a work piece accelerates the plastic deformation localization such that the material with lower hardening exponent results in a rapid shear band formation. Moreover, the results from the numerical analysis reflected closely with the micro-structures around the fractured regime. The effects of the various hardening parameters on deformation localization are also investigated. As the nonlinear strain rate description in the back stress evolution becomes dominant, the strain localization becomes intensified as well as the damage evolution.

A Study of Risk Factors related to Back Pain in Bus Drivers (버스 운전기사의 요통발생 요인에 관한 연구)

  • Park, So-Yon
    • Physical Therapy Korea
    • /
    • v.4 no.2
    • /
    • pp.18-35
    • /
    • 1997
  • The purpose of this study were to determine causes of low back pain in bus drivers who usually work in prolonged sitting position and to find the relationship of back pain with general characteristics and work environmental characteristics, stress symptoms, to com맹re lordosis angle of habitual driving posture and resting posture in low back pain group and non-low back pain group, and to use this result as a basis for improvement of work environment and comprehensive rehabilitative management of low back pain. Ninety-eight bus drivers were selected from the membership of an urban transit union in Seoul. These informations were collected from May 1, 1997 to May 25, 1997 by means of structured questionnaires and X-ray findings. These data were analyzed by $x^2$ test, t-test, logistic regression using SAS. The major results were as follows: 1. Of the respondents, 66.3% of bus drivers were found to be experiencing back pain. 2. Of the respondents of low back pain groups, 78.5% reported that major cause of low back pain was due to prolonged sitting. 3. The group with experiences of frequent or continuous vibration had more low back pain (p<0.05). There were no significant differences among other work environmental factors. 4. Average stress score was significantly higher in the group with low back pain than in the group without low back pain (p<0.05). 5. The results of the logistic regression analyses were statistically significant vibration from seat and stress score among the risk factors (p<0.05). 6. Averaged lordosis angle of habitual driving posture was $7.6{\pm}14.9$ degrees in low back pain group, $16.5{\pm}8.7$ degrees in non-low back pain and averaged lordosis angle of resting sitting posture was $10.8{\pm}13.7$ degrees in low back pain, $18.9{\pm}9.6$ degrees in non-low back pain group but the difference in mean lordosis angles of two groups was not statistically significant. The results of this study indicate that professional drivers developed chronicity of low back pain due to unfit seat, poor habitual posture and stress from vibration or other risk factors. Therefore, there is need to improve work environment, i.e. enough resting, to set a seat to support lumbar spine properly and to provide comprehensive rehabilitation program including early diagnosis, proper treatment and education for self help management.

  • PDF

The effects of high sustained +Gz under different seat back angles (조종석 각도변화가 양성 가속도에 미치는 영향에 관한 연구)

  • 이창민;박세권
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Current fighter pilots, flying new generation aircrafts with high performance, are under severe stress during aerial combat maneuvering when they are exposed to high sustained +Gz(Head-to-foot) acceleration stress. Two major factor limiting performance during high sustaied +Gz acceleration stress are loss of vision-greyout or blackout, and loss of consciousness (LOC). These symptoms are believed to occur as a result of insuff- icient blood flow to the retina and the brain. This study was conducted to evaluate the effects of high sustained +Gz stress under different seat back angle. The results. obtained by the biodvanmic computer simulations using the ATB(articulated total body) model, are represented with respect to three variables, such as HIC(head injury criterion) value, average G, and maximum G. The results demonstrate that the seat back angle(over $30^{\circ}C$) had a significant effect to decrease +Gz stress on the head segment and had no significant effect on HIC.

  • PDF

Stress Analysis at the Contact Boundary between the Work Roll and the Back-up Roll for a SmartCrown Roll Profile Shape (SmartCrown Roll Profile 형상에 따른 Work Roll과 Back-up Roll 접촉경계면의 응력해석)

  • Song, S.H.;Kim, S.R.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2015
  • SmartCrown is a system to control the plate crown by shifting the sine-shaped work rolls in the axial direction. The control range of the plate crown depends on a depth of sine-shaped roll profile because the roll radius varies continuously along the axial direction. When the roll profile is changed to improve the control range, the contact stress between the work roll and the back-up roll also changes. In the current study, the contact stress for various profiles and rolling conditions were analyzed using the finite element method and compared with results from Hertzian contact theory. A submodel method is used to increase the accuracy of the finite element analysis. The analysis results showed that the maximum increase in the contact stress was only 53MPa, so it is anticipated that no back-up roll spalling will occur.

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET (Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석)

  • Na, Min-Ki;Han, In-Shik;Choi, Won-Ho;Kwon, Hyuk-Min;Ji, Hee-Hwan;Park, Sung-Hyung;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.