• 제목/요약/키워드: Back propagation neural network

검색결과 1,073건 처리시간 0.031초

On-board Capacity Estimation of Lithium-ion Batteries Based on Charge Phase

  • Zhou, Yapeng;Huang, Miaohua
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.733-741
    • /
    • 2018
  • Capacity estimation is indispensable to ensure the safety and reliability of lithium-ion batteries in electric vehicles (EVs). Therefore it's quite necessary to develop an effective on-board capacity estimation technique. Based on experiment, it's found constant current charge time (CCCT) and the capacity have a strong linear correlation when the capacity is more than 80% of its rated value, during which the battery is considered healthy. Thus this paper employs CCCT as the health indicator for on-board capacity estimation by means of relevance vector machine (RVM). As the ambient temperature (AT) dramatically influences the capacity fading, it is added to RVM input to improve the estimation accuracy. The estimations are compared with that via back-propagation neural network (BPNN). The experiments demonstrate that CCCT with AT is highly qualified for on-board capacity estimation of lithium-ion batteries via RVM as the results are more precise and reliable than that calculated by BPNN.

구속조건의 가용성을 보장하는 신경망기반 근사최적설계 (BPN Based Approximate Optimization for Constraint Feasibility)

  • 이종수;정희석;곽노성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2007
  • Given a number of training data, a traditional BPN is normally trained by minimizing the absolute difference between target outputs and approximate outputs. When BPN is used as a meta-model for inequality constraint function, approximate optimal solutions are sometimes actually infeasible in a case where they are active at the constraint boundary. The paper describes the development of the efficient BPN based meta-model that enhances the constraint feasibility of approximate optimal solution. The modified BPN based meta-model is obtained by including the decision condition between lower/upper bounds of a constraint and an approximate value. The proposed approach is verified through a simple mathematical function and a ten-bar planar truss problem.

  • PDF

위성탐사 이미지에서 혼합화소의 해석에 관한 연구 (An Analysis of Mixed Pixel in the Remote Sensing Image Data)

  • 김진일;박민호;김성천
    • 대한공간정보학회지
    • /
    • 제3권2호
    • /
    • pp.91-100
    • /
    • 1995
  • 본 논문은 위성탐사 이미지의 분류에서 한 화소(SPOT HRV의 밴드 1-3의 경우 $200{\times}20m$)에 포함된 혼합된 정보의 분류를 시도한다. 먼저 기존의 분류기법에서 발생되는 정보의 손실과 혼합화소에 내포된 정보의 불확실성에 대해 알아보고 이를 해결하기 위한 방법으로 피지 시그모이드 함수와 역전파 신경망을 이용한 기법을 제안하며, 이를 실험하고 비교 분석한다.

  • PDF

피로 강도 및 경량화를 고려한 대차프레임 설계 (Bogie Frame Design Considering Fatigue Strength and Minimize Weight)

  • 박병화;김남포;김정석;이강용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.579-584
    • /
    • 2004
  • In development of the bogie, the fatigue strength of the bogie frame is an important design criteria. Also the bogie frame weight reduction is required in order to save energy and materials. In this study. structural analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC standards and it has been attempted minimize the weight of bogie frame by back-propagation neural network and genetic algorithm. Finite element mesh generation and finite element analysis were performed by Altaire Hyper Mesh and ABAQUS.

  • PDF

형태분석에 의한 특징 추출과 BP알고리즘을 이용한 정면 얼굴 인식 (Full face recognition using the feature extracted gy shape analyzing and the back-propagation algorithm)

  • 최동선;이주신
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.63-71
    • /
    • 1996
  • This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.

  • PDF

Real-Time Implementation of On-Line Trained Neuro-Controller for a BLDC Motor

  • Salem, M.M.;Zahran, M.B.;Atia, Yousry;Zaki, A.M.
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2003
  • Implementation and experimental verification of a simple neuro-controller (SNC) as a speed controller for a brush less DC (BLDC) motor is presented. The SNC with one weight and a linear hard limit activation function is trained on-line using the back propagation algorithm. A modified error function is used to ensure good performance during the on-line training, which has been used without previous off-line training. The SNC has been implemented using a computer-interface card mounted on a PC. The driving system performance has been investigated by a number of experimental tests for a variety of input reference speed trajectories.

역전파 알고리즘을 이용한 도립 진자 제어 (The Control of A Inverted Pendulum Using Backpropagation)

  • 최용길;홍대승;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2380-2382
    • /
    • 2000
  • Fuzzy system which are based on membership functions and rules, can control nonlinear, uncertian, complex system well. However, Fuzzy controller has problems: It is difficult to design a stable for amateur. To update the then-part membership functions of the fuzzy controller can be designed using the error back-propagation algorithm to be minimized error. Then we could be optimized the system choosing a good performance index. The proposed fuzzy controller based on neural network is applied to control an inverted pendulum for demonstration of the robustness of proposed methodology.

  • PDF

mGA를 사용한 복잡한 비선형 시스템의 뉴로-퍼지 모델링 (Neuro-Fuzzy Modeling of Complex Nonlinear System Using a mGA)

  • 최종일;이연우;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2305-2307
    • /
    • 2000
  • In this paper we propose a Neuro-Fuzzy modeling method using mGA for complex nonlinear system. mGA has more effective and adaptive structure than sGA with respect to using the changeable-length string. This paper suggest a new coding method for applying the model's input and output data to the number of optimul rules of fuzzy models and the structure and parameter identifications of membership function simultaneously. The proposed method realize optimal fuzzy inference system using the learning ability of Neural network. For fine-tune of the identified parameter by mGA, back-propagation algorithm used for optimulize the parameter of fuzzy set. The proposed fuzzy modeling method is applied to a nonlinear system to prove the superiority of the proposed approach through compare with ANFIS.

  • PDF

자기조직화 특징지도를 이용한 회전기계의 이상진동진단 (Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map)

  • 서상윤;임동수;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.