• Title/Summary/Keyword: Back propagation neural network

Search Result 1,073, Processing Time 0.029 seconds

On the Enhancement of the Recognition Performance for Back Propagation Neural Networks (역전파 선경회로망의 인식성능 향상에 관한 연구)

  • 홍봉화;이지영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.86-93
    • /
    • 1999
  • This paper proposes the multi-modular neural network and compensative input algorithm. The former is to reduce convergence speed which is one of the neural network's inveterate problems, and the latter is to improve the recognition performance of the neural network. This paper consists of two major parts and a simulation. First, it shows the structure of mu1ti-modular neural network, which is applied to the recognition of Korean, English characters and numbers. Second, it describes the compensative input algorithm and shows the steps that determine the compensative input. The proposed algorithm was tested and compared with the existing neural networks in the recognition of Korean and English characters and numbers. The convergence speed is three times or more faster than the existing neural network. In the case that compensative input was applied to neural network, the recognition rate was improved more than 10%.

  • PDF

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

A Highly Efficient Aeroelastic Optimization Method Based on a Surrogate Model

  • Zhiqiang, Wan;Xiaozhe, Wang;Chao, Yang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.491-500
    • /
    • 2016
  • This paper presents a highly efficient aeroelastic optimization method based on a surrogate model; the model is verified by considering the case of a high-aspect-ratio composite wing. Optimization frameworks using the Kriging model and genetic algorithm (GA), the Kriging model and improved particle swarm optimization (IPSO), and the back propagation neural network model (BP) and IPSO are presented. The feasibility of the method is verified, as the model can improve the optimization efficiency while also satisfying the engineering requirements. Moreover, the effects of the number of design variables and number of constraints on the optimization efficiency and objective function are analysed in detail. The accuracy of two surrogate models in aeroelastic optimization is also compared. The Kriging model is constructed more conveniently, and its predictive accuracy of the aeroelastic responses also satisfies the engineering requirements. According to the case of a high-aspect-ratio composite wing, the GA is better at global optimization.

Implementation of Speed-Sensorless Induction Motor Drives with RLS Algorithm (RLS 알로리즘을 이용한 유도전동기의 속도 센서리스 운전)

  • 김윤호;국윤상
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.384-387
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS(Recursive Least Squares) based on Neural Network Training Algorithm. The proposed algorithm based on the RLS has just the time-varying learning rate, while the well-known back-propagation (or generalized delta rule) algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The RLS based on NN is used to adjust the motor speed so that the neural model output follows the desired trajectory. This mechanism forces the estimated speed to follow precisely the actual motor speed. In this paper, a flux estimation strategy using filter concept is discussed. The theoretical analysis and experimental results to verify the effectiveness of the proposed analysis and the proposed control strategy are described.

  • PDF

Improvement of an Early Failure Rate By Using Neural Control Chart

  • Jang, K.Y.;Sung, C.J.;Lim, I.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.

  • PDF

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.

Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification (불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발)

  • 문현구;이철욱
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

Development of models for evaluating the short-circuiting arc phenomena of gas metal arc welding (GMA 용접의 단락이행 아크 현상의 평가를 위한 모델 개발)

  • 김용재;이세헌;강문진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • The purpose of this study is to develop an optimal model, using existing models, that is able to estimate the amount of spatter utilizing artificial neural network in the short circuit transfer mode of gas metal arc (GMA) welding. The amount of spatter generated during welding can become a barometer which represents the process stability of metal transfer in GMA welding, and it depends on some factors which constitute a periodic waveforms of welding current and arc voltage in short circuit GMA welding. So, the 12 factors, which could express the characteristics for the waveforms, and the amount of spatter are used as input and output variables of the neural network, respectively. Two neural network models to estimate the amount of spatter are proposed: A neural network model, where arc extinction is not considered, and a combined neural network model where it is considered. In order to reduce the calculation time it take to produce an output, the input vector and hidden layers for each model are optimized using the correlation coefficients between each factor and the amount of spattcr. The est~mation performance of each optimized model to the amount of spatter IS assessed and compared to the est~mation performance of the model proposed by Kang. Also, through the evaluation for the estimation performance of each optimized model, it is shown that the combined neural network model can almost perfectly predict the amount of spatter.

  • PDF

Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process (절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용)

  • Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.