• Title/Summary/Keyword: Back propagation neural network

Search Result 1,073, Processing Time 0.031 seconds

A Study on the Diagnosis of VEP Signal by using Wavelet transform (Wavelet변환을 이용한 VEP신호 진단에 대한 연구)

  • Seo, Gang-Do;Choi, Chang-Hyo;Shim, Jae-Chang;Cho, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.459-460
    • /
    • 2001
  • In this paper, we analyze algorithms for diagnosing of VEP(visual evoked potential) signal. We used wavelet transform for the preprocessing of VEP signal data and back propagation neural network for the pattern recognition. We used several wavelets to study their effects and efficiency in the preprocessing of VEP. The diagnosis system led to good results. We obtained the noise reduced and compressed signal with the wavelet transform of the training VEP signal. So it is possible to train the neural network faster and exact diagnosis processing is possible in the neural network. From the experimental results, we know that the discrimination ability of the neural network is changed by the type of basis vector and the proposed system is good to the diagnosis of VEP.

  • PDF

Control of the robot manipulators using fuzzy-neural network (퍼지 신경망을 이용한 로보트 매니퓰레이터 제어)

  • 김성현;김용호;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.436-440
    • /
    • 1992
  • As an approach to design the intelligent controller, this paper proposes a new FNN(Fuzzy Neural Network) control method using the hybrid combination of fuzzy logic control and neural network. The proposed FNN controller has two important capabilities, namely, adaptation and learning. These functions are performed by the following process. Firstly, identification of the parameters and estimation of the states for the unknown plant are achieved by the MNN(Model Neural Network) which is continuously trained on-line. And secondly, the learning is performed by FNN controller. The error back propagation algorithm is adopted as a learning technique. The effectiveness of the proposed method will be demonstrated by computer simulation of a two d.o.f. robot manipulator.

  • PDF

A Sliding Mode Controller Using Neural Network for Underwater Robot Manipulator (해저작업 로봇 매니퓰레이터를 위한 신경회로망을 이용한 슬라이딩 모드 제어기)

  • Lee, Min-Ho;Choi, Hyung-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.305-312
    • /
    • 2000
  • This paper presents a new control scheme using a sliding mode controller with a multilayer neural network for the robot manipulator operating under the sea which has large uncertainties such as the buoyancy and the added mass/moment of inertia. The multilayer neural network using the error back propagation loaming algorithm acts as a compensator of the conventional sliding mode controller to improve the control performance when the initial assumptions of uncertainty bounds are not valid. Computer simulation results show that the proposed control scheme gives an effective path way to cope with the unexpected large uncertainties in the underwater robot manipulator.

  • PDF

A Study on Defect Diagnosis of Rotating Machinery Using Neural Network (신경회로망을 이용한 회전기계의 고장진단에 관한 연구)

  • Choe, Won-Ho;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This paper describes an application of artificial neural network to diagnose the defects of rotating machiner. Induction motor was used to the object of defect diagnosis. For defect diagnosis, the frequency spectrum of vibration was utilized. Learning method of applied neural network was back propagation. Neural network has following advantage; Once it has been learned, inference time is very short and it can provide a reasonable conclusion regardless of insufficient input data. So, this defect diagnosis system can be used superiorly to rule based expert system as quality inspection of rotating machinery in the shop.

  • PDF

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

Prediction of Arc Welding Quality through Artificial Neural Network (신경망 알고리즘을 이용한 아크 용접부 품질 예측)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.44-48
    • /
    • 2013
  • Artificial neural network (ANN) model is applied to predict arc welding process window for automotive steel plate. Target weldment was various automotive steel plate combination with lap fillet joint. The accuracy of prediction was evaluated through comparison experimental result to ANN simulation. The effect of ANN variables on the accuracy is investigated such as number of hidden layers, perceptrons and transfer function type. A static back propagation model is established and tested. The result shows comparatively accurate predictability of the suggested ANN model. However, it restricts to use nonlinear transfer function instead of linear type and suggests only one single hidden layer rather than multiple ones to get better accuracy. In addition to this, obvious fact is affirmed again that the more perceptrons guarantee the better accuracy under the precondition that there are enough experimental database to train the neural network.

Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin (유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용)

  • Son, Ah Long;Han, Kun Yeon;Kim, Ji Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.

Speed Estimation and Control of IPMSM Drive with HAI Controller (HAI 제어기에 의한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Hong-Gyun;Lee Jung-Chul;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.220-227
    • /
    • 2005
  • This paper presents hybrid artificial intelligent(HAI) controller based on the vector controlled IPMSM drive system. And it is based on artificial technologies that adaptive neural network fuzzy(A-NNF) is to speed control and artificial neural network(ANN) is to speed estimation. The salient feature of this technique is the HAI controller The hybrid action tolerates any inaccuracies in the fuzzy logic assignment rules or in the neural network stationary weights. Speed estimators using feedforward multilayer and artificial neural network(ANN) are compared. The back-propagation algorithm is easy to derived the estimated speed tracks precisely the actual motor speed. This paper presents the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid intelligent control.

Device Discovery using Feed Forward Neural Network in Mobile P2P Environment

  • Kwon, Ki-Hyeon;Byun, Hyung-Gi;Kim, Nam-Yong;Kim, Sang-Choon;Lee, Hyung-Bong
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.393-401
    • /
    • 2007
  • P2P systems have gained a lot of research interests and popularity over the years and have the capability to unleash and distribute awesome amounts of computing power, storage and bandwidths currently languishing - often underutilized - within corporate enterprises and every Internet connected home in the world. Since there is no central control over resources or devices and no before hand information about the resources or devices, device discovery remains a substantial problem in P2P environment. In this paper, we cover some of the current solutions to this problem and then propose our feed forward neural network (FFNN) based solution for device discovery in mobile P2P environment. We implements feed forward neural network (FFNN) trained with back propagation (BP) algorithm for device discovery and show, how large computation task can be distributed among such devices using agent technology. It also shows the possibility to use our architecture in home networking where devices have less storage capacity.

  • PDF

Empirical Bushing Model For Vehicle Dynamic Analysis (차량동역학해석을 위한 실험적 부싱모델 개발)

  • Sohn, Jeong-Hyun;Kang, Tae-Ho;Baek, Woon-Kyung;Park, Dong-Woon;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.864-869
    • /
    • 2004
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra's algorithm of 'NARMAX' form is employed in the neural network bushing module. A numerical example is carried out to verify the developed bushing model.

  • PDF