• Title/Summary/Keyword: Back propagation neural network

Search Result 1,073, Processing Time 0.03 seconds

Position Control of The Robot Manipulator Using Fuzzy Logic and Multi-layer Neural Network (퍼지논리와 다층 신경망을 이용한 로봇 매니퓰레이터의 위치제어)

  • Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.17-32
    • /
    • 1992
  • The multi-layer neural network that has broadly been utilized in designing the controller of robot manipulator possesses the desirable characteristics of learning capacity, by which the uncertain variation of the dynamic parameters of robot can be handled adaptively, and parallel distributed processing that makes it possible to control on real-time. However the error back propagation algorithm that has been utilized popularly in the learning of the multi-layer neural network has the problem of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manupulator.

  • PDF

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.

Speech Recognition and Its Learning by Neural Networks (신경회로망을 이용한 음성인식과 그 학습)

  • 이권현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.350-357
    • /
    • 1991
  • A speech recognition system based on a neural network, which can be used for telephon number services was tested. Because in Korea two different cardinal number systems, a koreanic one and a sinokoreanic one, are in use, it is necessary that the used systems is able to recognize 22 discret words. The structure of the neural network used had two layers, also a structure with 3 layers, one hidden layreformed of each 11, 22 and 44 hidden units was tested. During the learning phase of the system the so called BP-algorithm (back propagation) was applied. The process of learning can e influenced by using a different learning factor and also by the method of learning(for instance random or cycle). The optimal rate of speaker independent recognition by using a 2 layer neural network was 96%. A drop of recognition was observed by overtraining. This phenomen appeared more clearly if a 3 layer neural network was used. These phenomens are described in this paper in more detail. Especially the influence of the construction of the neural network and the several states during the learning phase are examined.

  • PDF

Prediction of the Scour Depth around the Pipeline Exposed to Waves using Neural Networks (신경망을 이용한 파랑하 관로주변의 세굴심 예측)

  • Kim, Kyoungho;Cho, Junyoung;Lee, Hojin;Oh, Hyunsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.15-22
    • /
    • 2013
  • The submarine pipe, which is one of the most important coastal structures, is widely used in the development of coastal and ocean engineering. The scour of the submarine pipe occurs due to the wave and the current according to the state of the sea bed. The scour affects the submarine pipe and causes it to undergo settlement and fatigue. It is difficult to predict the local scour under complicated and various conditions of the coastal environment, even though many researches on the scour of the submarine pipe have been studied in recent years. This study analyzed the scour depth around a submarine pipe by using the Neural Network technique. The back-propagation algorithms was used to train the Neural Network. The 58 simulating experimental data for the performance and validation of the Neural Network technique were analyzed in this study. Then, the regression analysis for the same data was performed in this study to predict and compare with the Neural Network technique for the scour depth.

Compensation of robot manipulator uncertainties using back propagation neural network (역전파 신경회로망에 의한 로봇 팔의 불확실성 보상)

  • Lee, Sang-Jae;Lee, Seok-Won;Nam, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.312-317
    • /
    • 1996
  • This paper proposes a neural network controller with the computed torque method. The neural network is used not to learn the inverse dynamic model but to compensate the uncertainties of robotic manipulators. When training the neural network, we use the signals present in the proposed controller, which is simpler than that proposed by Ishiguro et al., whose teaching signals of the neural network come from the robot model.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

Development of Travelling Control Algorithm Based Fuzzy Perception and Neural Network for Two Wheel Driving Robot (퍼지추론 및 뉴럴네트워크 기반 2휠구동 로봇의 주행제어알고리즘 개발)

  • Kang, Eon-Uck;Yang, Jun-Seok;Cha, Bo-Nam;Park, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • This paper proposes a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF