Prediction of the Scour Depth around the Pipeline Exposed to Waves using Neural Networks

신경망을 이용한 파랑하 관로주변의 세굴심 예측

  • Kim, Kyoungho (Chunsbuk National University School of Civil Engineering) ;
  • Cho, Junyoung (Poonglim Industrial Co., Ltd.) ;
  • Lee, Hojin (Chunsbuk National University School of Civil Engineering) ;
  • Oh, Hyunsik (Chunsbuk National University School of Civil Engineering)
  • Published : 2013.05.01


The submarine pipe, which is one of the most important coastal structures, is widely used in the development of coastal and ocean engineering. The scour of the submarine pipe occurs due to the wave and the current according to the state of the sea bed. The scour affects the submarine pipe and causes it to undergo settlement and fatigue. It is difficult to predict the local scour under complicated and various conditions of the coastal environment, even though many researches on the scour of the submarine pipe have been studied in recent years. This study analyzed the scour depth around a submarine pipe by using the Neural Network technique. The back-propagation algorithms was used to train the Neural Network. The 58 simulating experimental data for the performance and validation of the Neural Network technique were analyzed in this study. Then, the regression analysis for the same data was performed in this study to predict and compare with the Neural Network technique for the scour depth.

해저관로는 중요한 해안구조물의 하나로 연안 및 해양개발을 위해 폭넓게 사용되고 있다. 해저관로는 해저지반의 상태에 따라 파와 흐름으로 인해 주변에 세굴이 발생한다. 이로 인해 관이 뜨거나 가라앉는 경우가 발생하여 관의 내구성에 악영향을 미친다. 최근에는 해양환경에서 구조물과 여러 요인들의 복잡한 상호작용에 의한 세굴에 대해 많은 연구들이 이루어졌지만, 아직까지 세굴을 정확히 예측하는 것은 어렵다. 본 연구에서는 신경망 기법으로 관로의 세굴심 자료를 분석하여 세굴심을 예측하였다. 학습을 위해 역전파 알고리즘을 사용하였다. 신경망 모델의 학습과 검증에 총 58개의 모형실험 자료들이 사용되었다. 또한 동일한 데이터에 대해 회귀분석 기법을 통한 예측과 비교 분석하여 세굴심 예측을 위한 신경망 기법의 적용성을 검토하였다.



  1. Bateni, S. M., Borghei, S. M., and Jeng, D. S.(2007), Neural Network and Neuro-Fuzzy Assessments for Scour Depth around Bridge Piers, Engineering Applications of Artificial Intelligence, Vol. 20, Issue 3, pp. 401-414.
  2. Han, W. W., Lee, K. S. and Ahn, T. B.(2005), A Study on Environmentally Friendly Block, Journal of the Korean Geoenvironmental Society, Vol. 6, No. 2, pp. 63-72.
  3. Haykin, S., 1999, Neural Networks A Comprehensive Foundation., Macmillian College Publishing Company, New York, pp. 443-483.
  4. Kambekar, A. R., and Deo, M. C.(2003), Estimation of Pile Group Scour Using Neural Networks, Applied Ocean Research, Vol.25, No. 4, pp. 225-234.
  5. Kang, J. G., Sim, O. B. and Song, J. W.(2002), Prediction of Local Scour Depth around Pier Using Artificial Neural Network Theory, Journal of the Korean Society of Civil Engineers, Vol. 22, No. 2-B, pp. 125-133.
  6. Mohammad Z. K., Beheshti A. A., and Behzad A. A.(2009), Estimation of Current-Induced Scour Depth around Pile Groups Using Neural Network and Adaptive Neuro-Fuzzy Inference System, Applied Soft Computing, Vol. 9, Issue 2, pp. 746-755.
  7. Oh, H. S., Lee, H. J. and Kim, K. H.(2002), Local Scour Properties below Submarine Pipeline in Waves, Journal of the Korean Society of Civil Engineers, Vol. 22, No. 4-B, pp. 539-549.
  8. Sumer, B. M. and Fredsoe, J.(1990), Scour below pipelines in waves. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 116, No. 3, pp. 307-323.