• Title/Summary/Keyword: Back polishing

Search Result 33, Processing Time 0.034 seconds

Planarization Uniformity Improvement by a Variable Pressure Type of the Polishing Head with the Thin Rubber Sheet (얇은 고무막 형태의 압력가변 연마헤드를 이용한 웨이퍼 평탄도 개선 방법에 관한 연구)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, a new polishing head with the variable pressure structure was studied to improve the planarization uniformity of the conventional template-metal head. Metal surface waviness and slurry distribution on the pad have been known to affect the polishing uniformity even in the synchronized quill and platen velocities. A polishing head with silicon rubber sheet was used to get a curved pressure distribution. In the experiment, the vertical deflection behavior on the pad was characterized with back pressure in the air chamber. Quill force increased linearly with backpressure. However, backpressure under a quill force made the upward movements of the quill. In the wafer polishing experiments, polishing rate and polishing thickness distribution were severely changed with backpressure. The best uniformity was observed with the standard deviation off.5% level of average polishing removal 215nm at backpressure 12.1kPa.

A Study on the Precision Processing of Thin Stamper with Global Area (대면적 박판 스탬퍼 정밀 가공을 위한 연구)

  • 최두선;제태진;서승호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.632-635
    • /
    • 2003
  • As a process technology of nano pattern with a new conception for economic and practical technology of alternative nano process. process technologies such as Embossing, Imprinting. Molding and Inking are beginning to make its appearance. Among these alternative processes, nano mold process is a process that is of benefit to mass production and keeps excellency of reproduction and high quality of parts. In this study, we experienced micro precision machining technology of nano stamper for the injection mold of optical disk with big capacity. Especially, Flatness and uniformity are important for nano stamper with global area, for the purpose of developing polishing technology of micro precision of Back polishing only being used for nano stamper, we carried out a basic study to secure flatness standards

  • PDF

A Study for the Improvement of Torn Oxide Defects in Shallow Trench Isolation-Chemical Mechanical Polishing (STI-CMP) Process (STI--CMP 공정에서 Torn oxide 결함 해결에 관한 연구)

  • 서용진;정헌상;김상용;이우선;이강현;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • STI(shallow trench isolation)-CMP(chemical mechanical polishing) process have been substituted for LOCOS(local oxidation of silicon) process to obtain global planarization in the below sub-0.5㎛ technology. However TI-CMP process, especially TI-CMP with RIE(reactive ion etching) etch back process, has some kinds of defect like nitride residue, torn oxide defect, etc. In this paper, we studied how to reduced torn oxide defects after STI-CMP with RIE etch back processed. Although torn oxide defects which can occur on trench area is not deep and not severe, torn oxide defects on moat area is not deep and not severe, torn oxide defects on moat area is sometimes very deep and makes the yield loss. Thus, we did test on pattern wafers which go through trench process, APECVD process, and RIE etch back process by using an IPEC 472 polisher, IC1000/SUVA4 PAD and KOH base slurry to reduce the number of torn defects and to study what is the origin of torn oxide defects.

  • PDF

Optimization of Cu CMP Process Parameter using DOE Method (DOE 방법을 이용한 Cu CMP 공정 변수의 최적화)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. However, it still has various problems to the CMP equipment, in particular, among the CMP components, process variables are very important parameters in determining the removal rate and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the interaction between the various parameters such as turntable and head speed, down force and back pressure during CMP. Using statistical analysis techniques, a better understanding of the interaction behavior between the various parameters and the effect on removal rate, no-uniformity and ETC (edge to center) is achieved.

  • PDF

An Experimental Study on Magnetic Assisted Polishing of Polycarbonate Plate for Recycling (폴리카보네이트 판재의 재활용을 위한 자기연마 가공)

  • Lee, Yong-Chul;Kim, Kwang-Sam;Kwak, Tae-Soo;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • This study has focused on transparency recovering of the polycarbonate by polishing its surface for recycling. The polycarbonate has many properties such as excellent mechanical strength, electrical insulating, superior heat resistance to other plastic material and especially good transparency. It has been used as barrier for the traffic noise at the roadside and the greenhouse for the palm house. But the polycarbonate has changed slightly as time goes by 10 years because of exposure to the strong sunlight and oxidization in the atmosphere, as result has lost its transparency. Magnetic assisted polishing has been utilized as an effective polishing method to recover the transparency of polycarbonate. The polycarbonate which has been used for 10 years was adopted as the sample. The first surface roughness of the sample was 1$1.23{\mu}mRa$, $7.5{\mu}mRz(DIN)$ respectively. In the experimental results, it showed that the surface roughness of the polished sample improved $0.013{\mu}mRa$, $0.08{\mu}mRz(DIN)$ from the first surface roughness respectively. The surface roughness get almost back again by magnetic assisted polishing. These results also showed that the magnetic assisted polishing was efficient machining method to reuse the polycarbonate material.

Machining Accuracy for Large Optical Mirror using On-Machine Spherical Surface ]Referenced Shack-Hartmann System (On-Machine 구면기준 Shack-Hartmann 장치를 이용한 대형 반사경의 가공 정밀도 연구)

  • Hong Jong Hui;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.726-733
    • /
    • 2005
  • A spherical surface referenced Shack-Hartmann method is studied for inspecting machining accuracy of large concave mirror This method is so strong to the vibration environment for using as an on-machine inspection system during polishing process of large optics comparing with the interferometry. The measuring uncertainty of the system is shown as less than p-v 150 m. On-machine measured surface profile data with this method is used for feed back control of the polishing time or depth to improve the surface profile accuracy of large concave mirror. Also, the spherical surface referenced Shack-Hartmann method is useful for measuring aspheric such as parabolic or hyperbolic surface profile, comparing that the interferomehy needs a special null lens, which is to be a reference and difficult to fabricate.

Conditioning of Magnetorheological finishing (자성유변연마의 컨디셔닝 기술)

  • 신영재;이응숙;김경웅;김영민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.557-560
    • /
    • 2003
  • Magnetorheological finishing(MRF) is a newly developed and recently commercialized for finishing optical components. The magnetorheological fluid consists of a water based suspension of carbonyl iron, nonmagnetic polishing abrasives, and small amounts of stabilizer. This magnetorheological fluid is pumped from conditioner on the rotating wheel and suctioned back to the conditioner, where it cooled to setpoint temperature and evaporative losses are replaced. This method could produce some problems in suction. So newly designed MRF tools is proposed in which MR fluid is not circulated and conditioned by the slurry. The new polishing mechanism is experimented. Measured surface roughness supports the validity of this mechanism.

  • PDF

A Study on DOE Method to Optimize the Process Parameters for Cu CMP (구리 CMP 공정변수 최적화를 위한 실험계획법(DOE) 연구)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. Copper has been the candidate metallization material for ultra-large scale integrated circuits (ULSIs), owing to its excellent electro-migration resistance and low electrical resistance. However, it still has various problems in copper CMP process. Thus, it is important to understand the effect of the process variables such as turntable speed, head speed, down force and back pressure are very important parameters that must be carefully formulated in order to achieve desired the removal rates and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the main effect of the variables and the interaction between the various parameters during CMP. A better understanding of the interaction behavior between the various parameters and the effect on removal rate, non-uniformity and ETC (edge to center) is achieved by using the statistical analysis techniques. In the experimental tests, the optimum parameters which were derived from the statistical analysis could be found for higher removal rate and lower non-uniformity through the above DOE results.

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.56-59
    • /
    • 2011
  • The characterization of the chemical mechanical polishing (CMP) process for undensified phophosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been used by experimenters to understand the relationship between the input variables and responses of interest in a simple and efficient way, and it typically is beneficial for determining the appropriatesize of experiments with multiple process variables and making statistical inferences for the responses of interest. The equipment controllable parameters used to operate the machine consist of the down force of the wafer carrier, pressure on the back side wafer, table and spindle speeds (SS), slurry flow (SF) rate, pad condition, etc. None of these are independent ofeach other and, thus, the interaction between the parameters also needs to be understoodfor improved process characterization in CMP. In this study, we selected the five controllable equipment parameters the most recommendedby process engineers, viz. the down force (DF), back pressure (BP), table speed (TS), SS, and SF, for the characterization of the CMP process with respect to the material removal rate and film uniformity in percentage terms. The polished material is undensified PSG which is widely used for the plananization of multi-layered metal interconnects. By statistical modeling and the analysis of the metrology data acquired from a series of $2^{5-1}$ fractional factorial designs with two center points, we showed that the DF, BP and TS have the greatest effect on both the removal rate and film uniformity, as expected. It is revealed that the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that process control based on a better understanding of the process is the key to success in current semiconductor manufacturing, in which the size of the wafer is approaching 300 mm and is scheduled to continuously increase up to 450 mm in or slightly after 2012.

A study on the global planarization characteristics in end point stage for device wafers (다바이스 웨이퍼의 평탄화와 종점 전후의 평탄화 특성에 관한 연구)

  • 정해도;김호윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.76-82
    • /
    • 1997
  • Chemical mechanical polishing (CMP) has become widely accepted for the planarization of multi-interconnect structures in semiconductor manufacturing. However, perfect planarization is not so easily ahieved because it depends on the pattern sensitivity, the large number of controllable process parameters, and the absence of a reliable process model, etc. In this paper, we realized the planarization of deposited oxide layers followed by metal (W) polishing as a replacement for tungsten etch-back process for via formation. Atomic force microscope (AFM) is used for the evaluation of pattern topography during CMP. As a result, AFM evaluation is very attractive compared to conventional methods for the measurment of planarity. mOreover, it will contribute to analyze planarization characteristics and establish CMP model.

  • PDF