• Title/Summary/Keyword: Back diffusion

Search Result 157, Processing Time 0.02 seconds

The simulation of electrons swarm parameter in He gas is used by Boltzman equation (볼츠만 방정식을 이용한 Helium 가스의 전자군 파라미터 시뮬레이션)

  • 송병두;하성철;김대연
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.155-158
    • /
    • 1998
  • This paper is calculated at electron swarm simulation by Back Prolongation of Boltzmann equation for range of E/N values from 0.1~200[Td], pressure P= 1.0[Torr], temperature T=300[ 。K], the electron swarm parameter(drift velocity, longitudinal . transverse diffusion coefficients, characteristic energy, etc) in He gas is used by electron collision cross section, particularly explicate the simulation technique, and consider electrical conduction characteristic of He gas.

  • PDF

alysis of ion motion in fusion plasma by Monte Carlo Simulation (Monte Carlo 법을 이용한 플라즈마 내의 이온 운동 해석)

  • Lee, Hong-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.447-450
    • /
    • 1989
  • Single particle orbit in plasma is obtained by drift Hamiltonian formulation in magnetic coordinate. The collisional effect is implied by Monte Carlo Method and the velocity space diffusion, energy transfer to the back ground plasma and the variation of energy distribution of test particles are investigated from many particles analysis.

  • PDF

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지에서 고분자 막의 이온 전도도)

  • Hwang, Byungchan;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.593-597
    • /
    • 2016
  • The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

Effect of Support Membrane Property on Performance of Forward Osmosis Membrane (지지체 특성이 정삼투막 성능에 미치는 영향)

  • Jeong, Bo-Reum;Kim, Jong-Hak;Kim, Beom-Sik;Park, Yoo-In;Song, Du-Hyun;Kim, In-Chul
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • The aim of this paper is to evaluate and compare the performances of forward osmosis (FO) membranes using different materials. The FO membranes were synthesized using interfacial polymerization method on hydrophobic polysulfone (PSf) and relatively hydrophilic polyethersulfone (PES) supports. The FO performance such as flux and back diffusion was measured. The resulting fluxes of PSf and PES FO membranes were $4.3\;L/m^2hr$ and $17.8\;L/m^2hr$, respectively. The flux of the PES FO membrane was higher than that of the PSf FO membrane. The results indicated that hydrophillictity of the support membrane is important for increasing flux in FO process. Moreover, with decreasing the support layer thickness, flux increased considerably.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Verification and validation of isotope inventory prediction for back-end cycle management using two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Cherezov, Alexey;Park, Jinsu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2104-2125
    • /
    • 2021
  • This paper presents the verification and validation (V&V) of a calculation module for isotope inventory prediction to control the back-end cycle of spent nuclear fuel (SNF). The calculation method presented herein was implemented in a two-step code system of a lattice code STREAM and a nodal diffusion code RAST-K. STREAM generates a cross section and provides the number density information using branch/history depletion branch calculations, whereas RAST-K supplies the power history and three history indices (boron concentration, moderator temperature, and fuel temperature). As its primary feature, this method can directly consider three-dimensional core simulation conditions using history indices of the operating conditions. Therefore, this method reduces the computation time by avoiding a recalculation of the fuel depletion. The module for isotope inventory calculates the number densities using the Lagrange interpolation method and power history correction factors, which are applied to correct the effects of the decay and fission products generated at different power levels. To assess the reliability of the developed code system for back-end cycle analysis, validation study was performed with 58 measured samples of pressurized water reactor (PWR) SNF, and code-to-code comparison was conducted with STREAM-SNF, HELIOS-1.6 and SCALE 5.1. The V&V results presented that the developed code system can provide reasonable results with comparable confidence intervals. As a result, this paper successfully demonstrates that the isotope inventory prediction code system can be used for spent nuclear fuel analysis.

Numerical Modeling on Microsegregation with Tip-undercooling in Weld Metal of Binary Alloys (과냉을 고려한 2원계합금 용접용융부의 미시편적 거동에 대한 수치해석 모델링)

  • 박종민;박준민;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.60-68
    • /
    • 1999
  • The previously developed two dimensional model was modified in order to predict more accurately the degree of microsegregation and eutectic fraction on in weld metal whose solidification rate is very fast. The model employed the same assumptions with previous model but considered of a tip undercooling. The previously predicted microsegregation and eutectic fraction has the discrepancies between simulated and examined results in the weld metal solidification. The experiments for the weld metal solidification of 2024 A1 and Fe-Ni alloy were carried out in order to examine the reasonability and feasibility of this modified model. The concentration profile of the solute and eutectic fraction predicted by the simulation agreed well with those found from experimental works. According to the results, it was believed that the dendrite tip undercooling considered in the modified model be reasonable for predicting the degree of microsegregation more accurately in weld metla solidification. In the GTA welds, degree of dendrite-tip undercooling increases with increasing solidification rage(welding speed). This serves to increase the concentration of dendrite core and thus result in reducing the degree of segregation. And solid state diffusion(back diffusion) during solidification is very low in the weld metal solidification so that little additional homogenization of solute occurs during solidification. With consideration of tip undercooling this modified model can predict exactly degree of microsegregation and eutectic fraction from slow solidification(casting) to fast solidification(welding).

  • PDF

An Experimental Study for Characteristics Evaluation of Cement Mortar Using Infrared Thermography Technique (적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가)

  • Kwon, Seung-Jun;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.53-59
    • /
    • 2010
  • Recently, NDTs (Non-Destructive Techniques) using infrared camera are widely studied for detection of damage and void in RC (reinforced concrete) structures and they are also considered as an effective techniques for maintenance of infrastructures. The temperature on concrete surface depends on material and thermal properties such as specific heat, thermal conductivity, and thermal diffusion coefficient. Different porosity on cement mortar due to different mixture proportions can show different heat behavior in cooling stage. The porosity can affect physical and durability properties like strength and chloride diffusion coefficient as well. In this paper, active thermography which uses flash for heat induction is utilized and thermal characteristics on surface are evaluated. Samples of cement mortar with W/C (water to cement ratio) of 0.55 and 0.65 are prepared and physical properties like porosity, compressive strength, and chloride diffusion coefficient are evaluated. Then infrared thermography technique is carried out in a constant room condition (temperature $20{\sim}22^{\circ}C$ and relative humidity 55-60%). The mortar samples with higher porosity shows higher residual temperature at the cooling stage and also shows reduced critical time which shows constant temperature due to back wall effect. Furthermore, simple equation for critical time of back wall effect is suggested with porosity and experimental constants. These characteristics indicate the applicability of infrared thermography as an NDT for quality assessment of cement based composite like concrete. Physical properties and thermal behavior in cement mortar with different porosity are analyzed in discussed in this paper.