• Title/Summary/Keyword: Back Propagation Neural Network

Search Result 1,073, Processing Time 0.029 seconds

An application of neural network to autopilot design (신경회로망을 이용한 자동조종장치 설계)

  • 유재종;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.619-623
    • /
    • 1993
  • In this paper, a neural network is appled to design a lateral autopilot for airplanes. Linearized lateral dynamics is used in training the neural network controller and verifying the performance as well. To train the neural network, back propagation algorithm is used. In this training, no information about the dynamics to be controlled except sign and rough magnitude of control derivatives is needed. It is shown by computer simulations that the performance and stability margin are satisfactory.

  • PDF

Automatic Detection of Interstitial Lung Disease using Neural Network

  • Kouda, Takaharu;Kondo, Hiroshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • Automatic detection of interstitial lung disease using Neural Network is presented. The rounded opacities in the pneumoconiosis X-ray photo are picked up quickly by a back propagation (BP) neural network with several typical training patterns. The training patterns from 0.6 mm ${\O}$ to 4.0 mm ${\O}$ are made by simple circles. The total evaluation is done from the size and figure categorization. Mary simulation examples show that the proposed method gives much reliable result than traditional ones.

Fabrication of a Neural Network IC for Korean Vowels Recognition (한국어 모음인식 신경회로망 집적회로의 제작)

  • 최상훈;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.71-75
    • /
    • 1993
  • This paper presents a neural network IC for Korean vowels recognition. The neural network is composed with three levels and which is learned by Back Propagation algorithm. In the neural network IC, the neuron bodys and synapses are implemented with CMOS inverters and ion-implanted polysilicon resistors.

  • PDF

A Study on ECG Oata Compression Algorithm Using Neural Network (신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구)

  • 김태국;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Neural Network-Based Human Identification Using Teeth Contours (치아 윤곽선 정보를 이용한 신경회로망 기반 신원 확인 방안)

  • Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.275-282
    • /
    • 2013
  • This paper proposes a method for human identification using teeth contours extracted from dental images that are captured from the frontal views of subjects each of who opens his or her mouth slightly. Each dental image has a black-colored region containing the subject's teeth contours which are usually different from subject to subject. This means that this black-colored region has bio-mimetic information useful for human identification. The basic idea of the method is to extract the upper and lower teeth contours from the dental image of each subject and to encode their geometric patterns using a back-propagation neural network model. After acquiring 400 teeth images form 10 university students, we used 300 images for the training data of the neural network model and 100 images for its verification. Experimental results have shown that the proposed neural network-based method can be used as an alternative solution for identification among a small group of humans with a low cost and simple setup.

Robust Parameter Design Based on Back Propagation Neural Network (인공신경망을 이용한 로버스트설계에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.81-89
    • /
    • 2012
  • Since introduced by Vining and Myers in 1990, the concept of dual response approach based on response surface methodology has widely been investigated and adopted for the purpose of robust design. Separately estimating mean and variance responses, dual response approach may take advantages of optimization modeling for finding optimum settings of input factors. Explicitly assuming functional relationship between responses and input factors, however, it may not work well enough especially when the behavior of responses are poorly represented. A sufficient number of experimentations are required to improve the precision of estimations. This study proposes an alternative to dual response approach in which additional experiments are not required. An artificial neural network has been applied to model relationships between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Training, validating, and testing a neural network with empirical process data, an artificial data based on the neural network may be generated and used to estimate response functions without performing real experimentations. A drug formulation example from pharmaceutical industry has been investigated to demonstrate the procedures and applicability of the proposed approach.

A Study on an Image Classifier using Multi-Neural Networks (다중 신경망을 이용한 영상 분류기에 관한 연구)

  • Park, Soo-Bong;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • In this paper, we improve an image classifier algorithm based on neural network learning. It consists of two steps. The first is input pattern generation and the second, the global neural network implementation using an improved back-propagation algorithm. The feature vector for pattern recognition consists of the codebook data obtained from self-organization feature map learning. It decreases the input neuron number as well as the computational cost. The global neural network algorithm which is used in classifier inserts a control part and an address memory part to the back-propagation algorithm to control weights and unit-offsets. The simulation results show that it does not fall into the local minima and can implement easily the large-scale neural network. And it decreases largely the learning time.

  • PDF

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.