• 제목/요약/키워드: Back Propagation Neural Network

검색결과 1,073건 처리시간 0.037초

인공 신경망 기법을 이용한 제지공정의 지절 원인 분석

  • 이진희;이학래
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2001년도 춘계학술발표논문집
    • /
    • pp.168-168
    • /
    • 2001
  • 제지공정의 지절 현상은 많은 공정 변수들이 복합적으로 작용하여 발생하는 가장 큰 공정 트러블 중의 하나이다. 지절은 생산량 감소 뿐만 아니라 발생 후 공정의 복구 와 정리, 생산재가동 및 공정의 재안정화를 위해 많은 시간과 비용, 그리고 노력이 투 입되어야 하므로 공정의 효율과 생산성을 크게 저하시키는 요인이다. 그러나 지절 현상 의 복잡성 때문에 이에 대해 쉽게 접근하거나 해결하지 못하고 있는 것이 현실이지만 그 필요성은 더욱 더 증대되고 있다. 본 연구에서는 최근 들어 각종 산업분야에서 복잡 한 공정상의 결점 발견 및 진단에 효과적이라고 인정받고 있는 예측 분석기법인 인공 신경망(artificial neural network) 시율레이션과 일반적인 통계기법 중의 하나인 주성분 분석을 이용하여 제지 공정의 지절 현상의 검토 가능성을 타진하였다. 인공신경망이란 인간두뇌에서 일어나는 자극-반응-학습과정을 모사하여 현실세계에 존재하는 다양한 현상들의 업력벡터와 출력상태 간의 비선형 mapping올 컴퓨터 시율 레이션을 통하여 분석하고자 하는 기법으로, 여러 가지 현상들을 학습을 통해서 인식하 는 신경망 내의 신경단위들이 병렬처리에 의해 많은 양의 자료에 대한 추론이나 판단 을 신속하고 정확하게 해주는 특징이 있으며 실시간 패턴인식이나 분류 응용분야에도 매우 매력적으로 이용되고 있는 방법이다. 이러한 인공 신경망 기법 중에서도 본 연구 에서는 퍼셉트론의 한계점을 극복하기 위하여 입력총과 출력층에 한 개 이상의 은닉층 ( (hidden layer)을 사용하여 다층 네트워으로 구성하고, 모든 입력패턴에 대하여 발생하 는 오차함수를 최소화하는 방향으로 연결강도를 조정하는 back propagation 학습 알고 리즘을 사용하였다. 지절의 원인으로 추정 가능한 공정인자들을 변수로 하여 최적의 인 공신경망을 구축하기 위해 학습률과 모멘트 상수의 변화 및 은닉층의 수와 출력층의 뉴런 수를 조절하는 동의 작업을 거쳐 네트워크의 정확도가 높은 인공신경망을 설계하 였다. 또한 이러한 인공신경망과의 비교분석을 위해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.

  • PDF

차단물질 특성 판정을 위한 지능형 분류기 설계에 관한 연구 (A Study on the Design of Intelligent Classifier for Decision of Quality of Barrier Material)

  • 김성호;윤성웅
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.230-235
    • /
    • 2008
  • 최근 LG화학은 '하이페리어(HYPERIER)'라 불리우는 고차단성의 고급 엔지니어링 플라스틱 신소재를 개발하였다. 이 소재는 LDPE(Low-Density Poly Ethylene)로 구성된 나노복합소재로 만들어졌으며, 여러 층으로 구성된다. 생산라인에서 산출된 최종 생산품의 품질을 보증하기 위해서는 하이페리어 내부에 존재하는 층들의 존재 유/무를 식별하기 위한 시험장비가 요구된다. 본 논문에서는 하이페리어 내부에 존재하는 층들의 유무를 조사하기 위해 사용될 수 있는 초음파 테스트 장치를 소개하고, 사람이 직접 계측된 신호를 검사하여 품질을 분류하는 기존의 시스템의 성능향상을 위해 FFT와 PCA, BP 신경망을 통하여 품질을 분류(양품/불량품)하는 기법을 제안하며, 시뮬레이션을 통하여 제안된 기법의 유용성을 확인해 보고자 한다.

선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I) (Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I))

  • 박주용
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

오류 역전도 알고리즘의 학습속도 향상기법 (An Enhancement of Learning Speed of the Error - Backpropagation Algorithm)

  • 심범식;정의용;윤충화;강경식
    • 한국정보처리학회논문지
    • /
    • 제4권7호
    • /
    • pp.1759-1769
    • /
    • 1997
  • 다층신경회로망의 학습방법인 오류역전도 알고리즘은 연관기억장치, 음성인식, 패턴인식, 로보틱스등과 같은 다양한 응용분야에 널리 사용되고 있다. 그럼에도 불구하고 계속 많은 논문들이 역전도 알고리즘에 대해 발표되고 있는 실정이다. 이러한 연구 동향의 주된 이유는, 뉴런 갯수와 학습 패턴의 갯수가 큰 경우에 역전도 알고리즘의 학습속도가 상당히 느리다는 사실때문이다. 본 연구에서는 가변학습율, 가변모멘텀율, 그리고 시그모이드 함수의 가변기울기를 이용한 새로운 학습속도 가속기법을 개발하였다. 학습이 수행되는 도중에, 이러한 파라메터들은 전체 오류의 변화량에 따라 연속적으로 조정되며, 제안된 기법은 기존의 역전도 알고리즘에 비해 획기적으로 학습시간을 단축시키는 결과를 보였다. 제안된 기법의 효율성을 입증하기 위하여, 처음에는 난수발생기로 생성한 이진 데이터를 이용하여 에포크(epoch) 횟수를 비교할 때 훌륭한 속도 향상을 보였으며, 또한, 기계학습(machine learning)의 벤치마크 학습자료로 많이 사용되는 이진 Monk's data, 4, 5, 6, 7비트 패리티 검사 문제와 실수 Iris data에도 적용하였다.

  • PDF

비점원오염모델을 이용한 오염총량모의시스템의 개발 및 적용 (Development and Application of Total Maximum Daily Loads Simulation System Using Nonpoint Source Pollution Model)

  • 강문성;박승우
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.117-128
    • /
    • 2003
  • 본 연구에서는 소유역에서의 오염총량을 추정하기 위하여 위성영상 카테고리분류 인공신경망 모형과 지리정보시스템 기반의 오염총량모의시스템(Total maximum daily Loads simulation System, TOLOS)을 개발하였으며, 발안유역의 HP#6 소유역을 시험유역으로 선정하여 유역 수문·수질 모니터링을 수행하였고, 시험유역의 도형 자료를 구축하여 TOLOS의 적용성을 평가하였다. TOLOS의 오염총량추정 모듈인 SWAT 모형은 논에서의 지표배수량을 고려하여 구성하였다. TOLOS을 이용하여 일별 측정 자료인 유출량, 유사량, 그리고 영양물질에 대하여 SWAT 모형의 보정과 검정을 실시하였으며, 그 결과 적용 가능성이 있는 것으로 나타났다.

망막 세포 특성에 의한 영상인식에 관한 연구 (A Study on Image Recognition based on the Characteristics of Retinal Cells)

  • 조재현;김도현;김광백
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2143-2149
    • /
    • 2007
  • 최근 시각 장애인을 위한 인공망막 모델 구현에 관한 연구 중 시피질 자극기 기술은 시각 자극 전달의 중간 단계를 생략하고 직접 뇌세포를 자극하는 것이다. 본 논문에서는 망막에서 시각 피질로 시각정보를 전달할 때 발생하는 시각 피질의 특성, 즉 방향성에 대한 반응 특성을 특징 데이터로 구성하여 인식함으로써 인간 시각 정보 처리와 유사한 영상 추출 및 인식 모델을 제안한다. 제안된 방법은 영상의 특징을 추출 한 후 Delta-bar-delta 기반 오류 역전파 알고리즘을 적용하여 영상의 특징들을 인식한다. 제시된 방법의 성능을 분석하기 위하여 다양한 숫자 패턴들을 대상으로 실험한 결과, 제안된 망막 세포로부터 전달된 정보를 방향성에 대한 민감성을 고려하여 영상의 특성을 추출하여 인식하는 모델이 기존의 영상 추출 및 인식 모델보다 인식률에 있어서는 별 차이가 없지만 다양한 실험에서 확인할 수 있듯이 인간 시각과 같이 인식 성능이 민감하지 않는 것을 알 수 있었다.

문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구 (A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model)

  • 심재승;원하람;안현철
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.201-220
    • /
    • 2019
  • 가짜뉴스가 전세계적 이슈로 부상한 최근 수년간 가짜뉴스 문제 해결을 위한 논의와 연구가 지속되고 있다. 특히 인공지능과 텍스트 분석을 이용한 자동화 가짜 뉴스 탐지에 대한 연구가 주목을 받고 있는데, 대부분 문서 분류 기법을 이용한 연구들이 주를 이루고 있는 가운데 문서 요약 기법은 지금까지 거의 활용되지 않았다. 그러나 최근 가짜뉴스 탐지 연구에 생성 요약 기법을 적용하여 성능 개선을 이끌어낸 사례가 해외에서 보고된 바 있으며, 추출 요약 기법 기반의 뉴스 자동 요약 서비스가 대중화된 현재, 요약된 뉴스 정보가 국내 가짜뉴스 탐지 모형의 성능 제고에 긍정적인 영향을 미치는지 확인해 볼 필요가 있다. 이에 본 연구에서는 국내 가짜뉴스에 요약 기법을 적용했을 때 정보 손실이 일어나는지, 혹은 정보가 그대로 보전되거나 혹은 잡음 제거를 통한 정보 획득 효과가 발생하는지 알아보기 위해 국내 뉴스 데이터에 추출 요약 기법을 적용하여 '본문 기반 가짜뉴스 탐지 모형'과 '요약문 기반 가짜뉴스 탐지 모형'을 구축하고, 다수의 기계학습 알고리즘을 적용하여 두 모형의 성능을 비교하는 실험을 수행하였다. 그 결과 BPN(Back Propagation Neural Network)과 SVM(Support Vector Machine)의 경우 큰 성능 차이가 발생하지 않았지만 DT(Decision Tree)의 경우 본문 기반 모델이, LR(Logistic Regression)의 경우 요약문 기반 모델이 다소 우세한 성능을 보였음을 확인하였다. 결과를 검증하는 과정에서 통계적으로 유의미한 수준으로는 요약문 기반 모델과 본문 기반 모델간의 차이가 확인되지는 않았지만, 요약을 적용하였을 경우 가짜뉴스 판별에 도움이 되는 핵심 정보는 최소한 보전되며 LR의 경우 성능 향상의 가능성이 있음을 확인하였다. 본 연구는 추출요약 기법을 국내 가짜뉴스 탐지 연구에 처음으로 적용해 본 도전적인 연구라는 점에서 의의가 있다. 하지만 한계점으로는 비교적 적은 데이터로 실험이 수행되었다는 점과 한 가지 문서요약기법만 사용되었다는 점을 제시할 수 있다. 향후 대규모의 데이터에서도 같은 맥락의 실험결과가 도출되는지 검증하고, 보다 다양한 문서요약기법을 적용해 봄으로써 요약 기법 간 차이를 규명하는 확장된 연구가 추후 수행되어야 할 것이다.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

분산추정에 의한 LVQ 신경회로망의 최적 출력뉴런 분할에 관한 연구 (A Study on Optimal Output Neuron Allocation of LVQ Neural Network using Variance Estimation)

  • 정준원;조성원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.239-242
    • /
    • 1996
  • 본 논문에서는 BP(Back Propagation)에 비해서 빠른 학습시간과 다른 경쟁학습 신경회로망 알고리즘에 비해서 비교적 우수한 성능으로 패턴인식 등에 많이 이용되고 있는 LVQ(Learning Vector Quantization) 알고리즘의 성능을 향상시키기 위한 방법을 논의하고자 한다. 일반적으로 LVQ는 음(negative)의 학습을 하기 때문에 초기 가중치가 제대로 설정되지 않으면 발산할 수 있다는 단점이 있으며, 경쟁학습 계열의 신경망이기 때문에 출력 층의 뉴런 수에 따라 성능에 큰 영향을 받는다고 알려져 있다.[1]. 지도학습 형태를 지닌 LVQ의 경우에 학습패턴이 n개의 클래스를 가지고, 각 클래스 별로 학습패턴의 수가 같은 경우에 일반적으로 전체 출력뉴런에 대해서 (출력뉴런수/n)개의 뉴런을 각 클래스의 목표(desired) 클러스터로 할당하여 학습을 수행하는데, 본 논문에서는 각 클래스에 동일한 수의 출력뉴런을 할당하지 않고, 학습데이터에서 각 클래스의 분산을 추정하여 각 클래스의 분산을 추정분산에 비례하게 목표 출력뉴런을 할당하고, 초기 가중치도 추정분산에 비례하게 각 클래스의 초기 임의 위치 입력백터를 사용하여 학습을 수행하는 방법을 제안한다. 본 논문에서 제안하는 방법은 분류하고자 하는 데이터에 대해서 필요한 최적의 출력뉴런 수를 찾는 것이 아니라 이미 결정되어 있는 출력뉴런 수에 대해서 각 클래스에 할당할 출력 뉴런 수를 데이터의 추정분산에 의해서 결정하는 것으로, 추정분산이 크면 상대적으로 많은 출력 뉴런을 할당하고 작으면 상대적으로 적은 출력뉴런을 할당하고 초기 가중치도 마찬가지 방법으로 결정하며, 이렇게 하면 정해진 출력뉴런 개수 안에서 각 클래스 별로 분류의 어려움에 따라서 출력뉴런을 할당하기 때문에 미학습 뉴런이 줄어들게 되어 성능의 향상을 기대할 수 있으며, 실험적으로 제안된 방법이 더 나은 성능을 보임을 확인했다.initially they expected a more practical program about planting than programs that teach community design. Many people are active in their own towns to create better environments and communities. The network system "Alpha Green-Net" is functional to support graduates of the course. In the future these educational programs for citizens will becomes very important. Other cities are starting to have their own progrms, but they are still very short term. "Alpha Green-Net" is in the process of growing. Many members are very keen to develop their own abilities. In the future these NPOs should become independent. To help these NPOs become independent and active the educational programs should consider and teach about how to do this more in the future.단하였는데 그 결과, 좌측 촉각엽에서 제4형의 신경연접이 퇴행성 변화를 나타내었다. 그러므로 촉각의 지각신경세포는 뇌의 같은 족 촉각엽에 뻗어와 제4형 신경연접을 형성한다고 결론되었다.$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적인 저해 활성을 나타내었다 따라서, 본 연구에서 빈

  • PDF

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.