• Title/Summary/Keyword: Bacillus strains

Search Result 1,037, Processing Time 0.028 seconds

Specific detection of Salmonella serogroup D1 by polymerase chain reaction(PCR) for sefA gene (SefA 유전자 PCR에 의한 Salmonella serogroup D1의 특이적 검출)

  • Jun, Moo-hyung;Kim, Tae-joong;Chang, Kyung-soo;Kang, Kyong-im;Kim, Kui-hyun;Kim, Ki-seok;Yoo, Sang-sik;Kim, Hyun-soo;Shin, Kwang-soon;Kim, Chul-joong
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.523-530
    • /
    • 1999
  • Sal enteritidis thin fimbriae, SEF14, were found to be restricted to the predominantly poultry-associated members of the Salmonella serogroup D1 that are considered as the important pathogens in poultry industry. SefA together with sefB and sefC encode the proteins involved in SEF14 biosynthesis. In order to develop the rapid and specific detection methods for Salmonella serogroup D1, a PCR technique for the amplification of sefA gene was established, and its specificity and sensitivity were investigated with various microorganisms. The bacterial genomic DNA was extracted by colony-picking and rapid boiled-lysate technique. In comparison of Sef I and Sef II primers used in the PCR, Sef I primer for sefA gene of 513bp showed higher specificity than that of Sef II. The established PCR was as sensitive as to detect 1pg of Sal enteritidis DNA. When 73 strains in 28 genera including the reference strains and the field isolates of various Salmonella serotypes, Bacillus subtilis, Bordetella bronchisepdca, E coli, Listeria spp., Micrococcus luteus, Rhodococcus equi, Staphylococcus spp., Streptococcus spp., Vibrio parahemolyticus, Yersinia spp. were studied, the established PCR yielded specifically positive results with only Salmonella serogroup D1. The results suggested that the PCR for sefA gene could be a potential candidate among the specific detection methods for Salmonella serogroup D1.

  • PDF

Application of MALDI-TOF mass spectrometry-based identification of foodborne pathogen tests to the Korea Food Standard Codex (MALDI-TOF 질량분석기를 이용한 식품중독균 확인시험 적용)

  • Ha, Miyoung;Son, Eun Jung;Choi, Eun Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.437-444
    • /
    • 2016
  • Rapid and reliable identification of microorganisms is important to maintain food quality and to control safety. MALDI-TOF MS-based identification methods are relatively fast and simple compared to other conventional methods including gram staining and biochemical characterization. A colony on subcultured media can be directly prepared on the analysis plate without further complex treatments. In this study, we confirmed the applicability of MALDI-TOF MS-based identification of foodborne pathogens such as Salmonella Enteritidis/Typhimurium, Staphylococcus aureus, Vibrio parahaemolyticus, Clostridium perfringens, Listeria monocytogenes, Yersinia enterocolitica, Bacillus cereus, Campylobacter jejuni, Campylobacter coli, and Cronobacter sakazakii on the Korea Food Standard Codex. MALDI-TOF MS data of the pathogenic reference strains were incorporated into a commercial MicroID (ASTA Inc.) database. Other pathogenic reference strains and seven isolates from various food samples were correctly identified to the species level by using the MicroID database. In conclusion, MALDI-TOF MS is comparable with commercial biochemical identification.

Studies on the Souring of Hansan Sogokju (Korean Traditional Rice Wine) (한산 소곡주의 시어짐에 관한 연구)

  • Lee, Chan-Yong;Kim, Tae-Wook;Sung, Chang-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.117-121
    • /
    • 1996
  • In order to find the reason for souring of Hansan sogokju (Korean traditional rice wine), microbial distribution, pH change and organic acids were analysed. Besides 161 mM of lactic acid as a major organic acid, small amount of acetic acid, malic acid, propionic acid were found in sogokju. Four different microbial strains were identified from the sogokju. These are two strains of Lactobacillus spp., Bacillus sp. and yeast. The pH of sogokju was changed from 4.01 to 3.29 during 18 days storage at $30^{\circ}C$. Amount of total acidity increased from 9 to 34.86 at the same condition. Notable change in the soured sogokju was an increase of the lactic acid (from 161 mM to 192 mM). So, we could assume that it was soured by an additional production of lactic acid by lactic acid bacteria during storage. The shelf life of sogokju was 41 days below $15^{\circ}C$ degree because this temperature was hard condition for the growth of Lactobacillus spp., causative bacteria responsible for additional lactic acid production.

  • PDF

Antibacterial and Proteolytic Activities of Bacterial Isolates from Ethnic Fermented Seafoods in the East Coast of Korea (동해안 특산 수산발효식품에서 분리된 균주의 항균 및 단백질 가수분해 활성)

  • Park, Woo Jung;Lee, Seung Hwan;Lee, Hyungjae
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.88-92
    • /
    • 2017
  • We attempted to investigate antibacterial and proteolytic activities of bacteria isolated from three ethnic fermented seafoods in the east coast of South Korea, gajami sikhae, squid jeotgal, and fermented jinuari (Grateloupia filicina). Bacillus cereus ATCC 14579, Listeria monocytogenes ATCC 15313, Staphylococcus aureus KCTC 1916, Escherichia coli O157:H7 ATCC 43895, and Salmonella enterica serovar Typhimurium ATCC 4931 were selected to determine the antibacterial activity of the bacterial isolates. Among 233 isolates from the three foods, 36 isolates (15.5%) showed antibacterial activity against B. cereus ATCC 14579, the highest incidence of inhibition, followed by S. aureus KCTC 1916 (7.7%) and L. monocytogenes ATCC 15313 (6.0%). However, only five and three strains among the isolates exhibited inhibitory activity against Gram-negative indicators, E. coli ATCC 43895 and Sal. enterica ATCC 4931, respectively. The proteolytic activity of the isolates was determined via hydrolysis of skim milk after 24, 48, and 72 h incubation. After 72 h incubation, 72 out of 233 isolates (30.9%) showed proteolytic activity, and the isolates of fermented jinuari exhibited the highest incidence of proteolytic activity (60%, 36 isolates). These results suggest that ethnic fermented seafoods in the east coast of South Korea might be a promising source of bacterial strains producing antibacterial and proteolytic compounds.

Microbial Forensics: Comparison of MLVA Results According to NGS Methods, and Forensic DNA Analysis Using MLVA (미생물법의학: 차세대염기서열분석 방법에 따른 MLVA 결과 비교 및 이를 활용한 DNA 감식)

  • Hyeongseok Yun;Seungho Lee;Seunghyun Lim;Daesang Lee;Sehun Gu;Jungeun Kim;Juhwan Jeong;Seongjoo Kim;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Microbial forensics is a scientific discipline for analyzing evidence related to biological crimes by identifying the origin of microorganisms. Multiple locus variable number tandem repeat analysis(MLVA) is one of the microbiological analysis methods used to specify subtypes within a species based on the number of tandem repeat in the genome, and advances in next generation sequencing(NGS) technology have enabled in silico anlysis of full-length whole genome sequences. In this paper, we analyzed unknown samples provided by Robert Koch Institute(RKI) through The United Nations Secretary-General's Mechanism(UNSGM)'s external quality assessment exercise(EQAE) project, which we officially participated in 2023. We confirmed that the 3 unknown samples were B. anthracis through nucleic acid isolation and genetic sequence analysis studies. MLVA results on 32 loci of B. anthracis were analysed by using genome sequences obtained from NGS(NextSeq and MinION) and Sanger sequencing. The MLVA typing using short-reads based NGS platform(NextSeq) showed a high probability of causing assembly error when a size of the tandem repeats was grater than 200 bp, while long-reads based NGS platform(MinION) showed higher accuracy than NextSeq, although insertion and deletion was observed. We also showed hybrid assembly can correct most indel error caused by MinION. Based on the MLVA results, genetic identification was performed compared to the 2,975 published MLVA databases of B. anthracis, and MLVA results of 10 strains were identical with 3 unkonwn samples. As a result of whole genome alignment of the 10 strains and 3 unknown samples, all samples were identified as B. anthracis strain A4564 which is associated with injectional anthrax isolates in heroin users.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

A Study on Microbial Aspects of Korean Human Milk by Collection Methods (수집방법에 따른 한국인 모유의 미생물 분포에 관한 연구)

  • 이조윤;배형철;남명수
    • Food Science of Animal Resources
    • /
    • v.23 no.3
    • /
    • pp.269-277
    • /
    • 2003
  • This study was carried out to evaluate the safety of Korean human milk. The microorganisms were identified from human milk of 149 healthy mothers by two collection methods, hand and pump expression. The means of total bacterial counts were 2.33x10$^4$ cfu/mL on the samples collected by the pump expression and 7.83xl0$^3$ cfu/mL on those collected by the hand expression. Therefore, the total bacterial counts of pump expression samples was 9.80xl0$^2$∼3.06x10$^4$ cfu/mL more than that of hand expression samples. The coliform counts of pump expression was 9.36xl0$^3$∼8.57xl0$^4$ cfu/mL more than that of hand expression. However, there was any significant differences of the lactic acid bacterial counts between the two samples collected by each methods. 100 strains of 5 patterns of total bacterial counts were isolated based on the morphology of colony in the standard plate count agar. 13 species were identified among the isolated strains. The dominant species in Korean human milk were Staphylococcus which 7 subspecies identified(81% in the rate of total bacteria, 1.07x10$^4$ cfu/mL). Other species identified were Micrococcus, Bacillus, Providencia, Pseudomonas, Yersinia and Acinetobacter. 36 strains of 6 patterns of lactic acid bacterial counts were isolated based on morphology of colony in the BCP agar. 7 species were identified among the isolated strains. The dominant species of lactic acid bacteria in Korean human milk were Lactobacillus brevis(50.9% in the rate of lactic acid bacteria, 4.72xl0$^4$ cfu/mL). Others species identified(49.1% lactic acid bacteria) were Lactobacillus curvatus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus acidophilus, Leuconostic lactis and Streptococcus salivarius subsp. thermophilus.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Characterization of Growth-supporting Factors Produced by Geobacillus toebii for the Commensal Thermophile Symbiobacterium toebii

  • Kim, Joong-Jae;Masui, Ryoji;Kuramitsu, Seiki;Seo, Jin-Ho;Kim, Kwang;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.490-496
    • /
    • 2008
  • Symbiobacterium toebii is a commensal symbiotic thermophile that cannot grow without support from a partner bacterium. We investigated the properties of Symbiobacterium growth-supporting factors (SGSFs) produced by the partner bacterium Geobacillus toebii. SGSFs occurred in both the cell-free extract (CFE) and culture supernatant of G. toebii and might comprise multifarious materials because of their different biological properties. The heavy SGSF contained in the cytosolic component exhibited heat- and proteinase-sensitive proteinaceous properties and had a molecular mass of >50 kDa. In contrast, the light SGSF contained in the extracellular component exhibited heat-stable, proteinase-resistant, nonprotein properties and had a molecular mass of <10 kDa. Under morphological examination using light microscopy, S. toebii cultured with the culture supernatant of G. toebii was filamentous, whereas S. toebii cultured with the CFE of G. toebii was rod-shaped. These results strongly suggest that the SGSFs produced by G. toebii comprise two or more types that differ in their growth-supporting mechanisms, although all support the growth of S. toebii. Upon the examination of the distribution of SGSFs in other bacteria, both cytosolic and extracellular components of Geobacillus kaustophilus, Escherichia coli, and Bacillus subtilis had detectable growth-supporting effects for S. toebii, indicating that common SGSF materials are widely present in various bacterial strains.

Pathogenic Characteristics and Antibiotic Resistance of Bacterial Isolates from Farmstead Cheeses

  • Jang, Kyeonga;Lee, Jeeyeon;Lee, Heeyoung;Kim, Sejeong;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan;Lee, Soomin
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.203-208
    • /
    • 2018
  • The objective of this study was to investigate the pathogenicity and antimicrobial resistance of foodborne pathogens isolated from farmstead cheeses. Twenty-seven isolates, including 18 Bacillus cereus, two Escherichia coli, and seven Staphylococcus aureus, were subjected to polymerase chain reaction (PCR) to detect virulence genes and toxin genes, and the antibiotic resistances of the isolates were determined. All E. coli isolates were determined by PCR to be non-pathogenic. Among the 18 B. cereus isolates, 17 isolates (94.4%) were diarrheal type, as indicated by the presence of nheA, entFM, hbIC, cytK and bceT genes, and one isolate (5.6%) was emetic type, based on the presence of the CER gene. Among the seven S. aureus isolates, three (42.9%) had the mecA gene, which is related to methicillin-resistance. Most B. cereus isolates (94.7%) showed antibiotic resistance to oxacillin and penicillin G, and some strains also showed resistance to ampicillin (26.3%), erythromycin (5.3%), tetracycline (10.5%), and vancomycin (5.3%). These results indicate that microbial food safety measures for farmstead cheese must be implemented in Korea because antibiotic resistant foodborne pathogens, with resistance even to vancomycin, harboring virulence genes were found to be present in the final products of farmstead cheese.