• Title/Summary/Keyword: Bacillus sp. A1

Search Result 545, Processing Time 0.031 seconds

Identification of Alkalophilic Bacillus sp. S-1013 Producing Non-Cariogenicity Sugar Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc and Optimization of Culture Condition for Its Production (비우식성 당 Fuc($1{\to}4$)gaINAc($2{\to}6$)NeuAc를 생산하는 호알칼리성 Bacillus sp. S-1013의 동정 및 생산조건의 최적화)

  • Ryu Il-Hwan;Kim Sun-Sook;Lee Kap-Sang;Lee Eun-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • The study was performed to identification of producing microbe Non-Cariogenicity Sugar (NCS; Fuc($1{\to}4$) gaINAc($2{\to}6$)NeuAc) with anti-caries activity, and to optimization of production condition. A typical strain which produced the NCS was identified alkalophilic Bacillus sp. S-1013 through the results of morphological, biochemical and chemotaxonomic characteristics and 16S rDNA sequencing. The optimal medium composition for the maximal production of the NCS from alkalophilic Bacillus sp. S-1013 was as follow: soluble starch 30 g, dextrin 15 g, yeast extract 5 g, peptone 10 g, $K_{2}HPO_4$ 2 g in a liter of distilled water. Optimal temperature and pH were 25 and 11.0, respectively. The highest production of NCS was shown 60 hrs cultivation using the optimal medium, and then NCS productivity and dry cell weight of culture broth increased 4.24 and 2.67 time than initial medium, respectively.

Bacillus sp. WS-42에 의한$\beta$-Mannanase 생산배지의 최적화

  • Kim, Jong-Hwa;Lee, Tae-Kyoo;Yang, Hee-Cheon;Oh, Deok-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.212-217
    • /
    • 1997
  • A strain of Bacillus sp. WS-14 was isolated from soil. Medium optimization for ${\beta}-mannanase$ production by Bacillus sp. WS-14 was performed. Effect of various carbon sources on ${\beta}-mannanase$ production was investigated and locust bean gum was the most effective for ${\beta}-mannanase$ production. ${\beta}-mannanase$ activity and cell growth increased with increasing the concentration of locust bean gum, however, the amounts were not significant. Among nitrogen sources, soytone was the most effective for ${\beta}-mannanase$ production. Inorganic compounds such as $KH_2PO_4,\;NaCl\;Na_2CO_3\;and\;MgSO_4{\cdot}7H_2O\;on\;{\beta}-mannanase$ production were optimized for ${\beta}-mannanase$ production. Locust bean gum of 10.0 g/l, soytone of 5.0 g/l, $KH_2PO_4$ of 2.0 g/l, NaCl of 10.0 g/l, $MgSO_4{\cdot}7H_2O\;of\;0.2\;g/l,\;Na_2CO_3$, of 2.0 g/l were selected as optimum content. Production of ${\beta}-mannanase$ by using the optimum medium was carried out. The maximum ${\beta}-mannanase$ activity of 20.8 unit/ml could be obtained after 14 h fermentation which corresponed to the productivity of ${\beta}-mannanase$ of 1.48 unit/ml-h.

  • PDF

알칼리 내성 Bacillus sp. YA-14 유래의 중복 Promotor를 이용한 재조합 Plasmid로부터의 Pectate Iyase의 발현

  • Park, Hee-Kyoung;Hahm, Byoung-Kwon;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.571-579
    • /
    • 1997
  • For the overproduction of pectate lyase (PL), the recombinant plasmid pl2BS fl which has strong promoter from alkali-tolerent Bacillus sp. YA-14 was used. In order to overexpress the pectate lyase by the action of overlapping strong promoter in pl2BS$\Delta$fl, 1.6 kb of PL gene was inserted into pl2BS$\Delta$fl to form pl2BS$\delta$f1-PL and the enzyme was expressed. But decreased expression efficiency of the PL gene was observed and it was due to the presence of the transcription terminator region on the upstream of the PL gene. The transcription terminator of the PL gene in pl2BS$\delta$f1-PL was removed and the resulting plasmid p12BS$\Delta$fl$\Delta$PL was formed. Bacillus subtilis 207-25 harboring the recombinant plasmid, p12BS$\Delta$fl$\Delta$PL, revealed increased expression efficiency with chloramphenicol induction when cat-86 was used as a reporter gene.

  • PDF

Studies on the Optimum Conditions of Soy Protein Coagulating Enzyme Production from Bacillus sp. IJ-3 Strain and the Action of IJ-3 Strain Enzyme on 75 Globulin (Bacillus sp. IJ-3가 생산하는 대두단백응고효소의 최적생산 조건 및 7S Globulin에 대한 효소적 작용에 관한 연구)

  • 박양원;김영전
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.878-884
    • /
    • 1996
  • A bacterial strain, designated as Bacillu sp. IJ-3 strain, was shown to produce the extracellular soy protein coagulating enzyme and culture conditions for the production of enzyme by this microbial strain was investigated. The culture medium giving a maximum soy protein coagulating activity was consist of 20%(w/v) soymilk, 2.0%(w/v) glucose, 4.0%(w/v) yeast extract, 5.0%(w/v) polypeptone and 1.0%(w/v) potassium phosphate, monobasic. Initial pH was optimal at 6.0 and the enzyme activity in the culture usually reached a maximal level of fermentation at $35^{\circ}C.$ After the culture medium adjustment where required, enzyme activity was reached maximum at 72 hour of cultivation but this enzyme activity was reduced quickly. It can be assumed that Bacillu sp. IJ-3 strain enzyme has a specificity toward the 75 globulin.

  • PDF

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick;Yoo, Ki-Hyun;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.298-303
    • /
    • 2004
  • In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

Biological Control of Strawberry Fusarium Wilt Caused by Fusarium oxysporum f. sp.fragariae Using Bacillus velezensis BS87 and RK1 Formulation

  • Nam, Myeong-Hyeon;Park, Myung-Soo;Kim, Hong-Gi;Yoo, Sung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.520-524
    • /
    • 2009
  • Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was $10^5$ and $10^6$ colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulations of B. velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

The Bacterial Contamination in Glasses for Vision Correction (시력 교정용 안경의 세균 오염)

  • Kim, Heung-Soo;Hwang, Seock-Yeon;Yun, Chi-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • Purpose: Recently, bacterial contamination of equipment and accessories required for vision correction has become a main causal factor in ophthalmic diseases. Thus, We investigated on both the actual condition of bacterial contamination from glasses of vision correction. Methods: Investigation of microorganisms was carried out with a group of 145 glasses wearers, composed of 36 elementary school students, 37 middle school students, 38 high school students, 10 college students, and 32 aged men. Results: Seventeen species of bacteria are detected from glasses of vision correction: B. cereus, B. licheniformis, Bacillus sp., CNS, Enterococcus sp., Escherichia coli, Proteus sp., Pseudomonas sp., Serretia sp., Streptococcus sp., Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus hemolyticus,, Acinetobacter sp., Enterobacter cloacae, GNR, and Pseudomonas aeruginosa. Among 17 species of bacteria, there are some potential causative agents for keratitis, corneal ulcer, Acute dacryocystitis, Orbital cellulitis, Periphlebitis retinae, Marginal blepharitis, and Acute conjunctivitis. Enterobacter cloacae, Pseudomonas aeruginosa and Staphylococcus epidermidis cause keratitis. Pseudomonas sp., and Staphylococcus aureus cause corneal ulcer. Staphylococcus aureus causes acute dacryocystitis, orbital cellulitis, periphlebitis retinae, marginal belpharitis. Streptococcus hemolyticus causes acute conjunctivitis. Conclusions: In summation, it is verified that hazardous, opportunistic and infectious microorganisms exist in glasses for vision correction. Ophthalmic diseases are predicted. Therefore, supplementary research on the development of a cleaning solution to cleanse the infection and of an effective method to remove microorganisms is required.

Cloning of Thermophilic Alkalophilic Bacillas sp. F204 Cellulase Gene and Its Expression in Escherichia coli and Bacillus subtilis (고온 알칼리성 Bacillus sp. F204의 Cellulase 유전자의 Escherichia coli 및 Bacillus subtilis에의 Cloning 및 발현)

  • Chung, Young-Chul;Kim, Yang-Woo;Kang, Shin-Kwon;Rho, Jong-Su;Park, Jae-Hyeon;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • Cellulase genes from thermophilic alkalophilic Bacillus sp. F204 a potent cellulase complex-producing bacterium, were cloned in Escherichia coli with pUC 19. Plasmids pBC191 and pBC192, isolated from transformants forming yellow zone around colony on the LB agar plate containing 0.5% carboxymethyl cellulose and ampicillin, contained 4.6 Kb and 5.8 Kb HindIII fragments, respectively. The 4.6 Kb insert of pBC191 had single sites for BamHI EcoRI, KpnI and pvuII. DNA hybridization and immunodiffusion studies showed that pBC191-encoded cellulase gene was homologous with that of host strain. pKC231, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pKK223-3, E. coli expression vector, and pGC711, constructed by inserting 4.6 Kb insert of pBC191 at the HindIII site of pGR71, E. coli and B. subtilis shuttle vector, had 3.2 times and 2.8 times as much cellulase activity as pBC191, respectively. Substrate specificity analysis showed that cellulases cloned were CMCase.

  • PDF