• Title/Summary/Keyword: Bacillus pasteurii

Search Result 20, Processing Time 0.027 seconds

Introduction and Expression of the Urease Gene in Mosquitocidal Bacillus sphaericus 1593 (세균성 Urease Gene에 의한 모기유충 방제균 Bacillus sphaericus 1593의 형질전환)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 1995
  • Bacillus sphaericus 1593 is a larvicidal toxin-producing mosquitocidal bacterium. The toxin contains a parasporal crystalline inclusion which is composed of a protein that is activated under alkaline condition. To enhance alkaline environment around toxin protein, cryptic plasmid cured, B. sphaericus 1593 was transformed by the Bacillus pasteurii urease gene which generate ammonia from urea. Transformant produced urease at about 80% more than wild type strain. B. sphaericus 1593, and the urease gene was stably maintained. It also produced crystalline toxin protein at the same level as the wild type strain B. sphaericus 1593.

  • PDF

Microbiologically - Enhanced Crack Remediation (MECR)

  • Bang Sookie S.;Ramakrishnan V.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.26-36
    • /
    • 2001
  • A novel approach of microbiologically-enhanced crack remediation (MECR) has been initiated and evaluated in this report. Under the laboratory conditions, Bacillus pasteurii was used to induce $CaCO_3$ precipitation as the microbial urease hydrolyzes urea to produce ammonia and carbon dioxide. The ammonia released in surroundings subsequently increases pH, leading to accumulation of insoluble $CaCO_3$. Scanning electron micrography (SEM) and x-ray diffraction (XRD) analyses evidenced the direct involvement of microorganisms in $CaCO_3$ precipitation. In biochemical studies, the primary roles of microorganisms and microbial urease were defined. Furthermore, the role of urease in $CaCO_3$ precipitation was characterized utilizing recombinant Escherichia coli that encoded B. pasteurii urease genes in a plasmid. Microorganisms immobilized in polyurethane (PU) polymer were applied to remediate concrete cracks. Although microbiologically- induced calcite precipitation enhanced neither the tensile strength nor the modulus of elasticity of the PU polymer, cement mortar whose crack was remediated with the cemaden polymer showed a significant increase in compressive strength. Through detailed investigation, MECR showed an excellent potential in cementing cracks in granite, concrete, and beyond.

  • PDF

Assessment for $CO_2$ Biomineralization Characteristics and its Applicability for Solidified Sludge (이산화탄소 생광물화 특성 및 슬러지 고화물 적용성 평가)

  • Min, Dong-Hee;Ahn, Chang-Min;Han, Ji-Sun;Yoon, Soon-Uk;Jeon, Eun-Jeong;Won, Jong-Choul;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.812-820
    • /
    • 2011
  • This study was conducted to characterize $CO_2$ biomineralization on several minerals (i.e., CaO, MgO, $SiO_2$) by bottle test in an aqueous solution and solidified sludge using different aerobic bacterial strains like Bacillus megaterium and Bacillus pasteurii by batch test. These bacteria promote the formation of microenvironments that facilitate the precipitation of mineral phases that were unsaturated in the bulk solution. For one type of mineral solely amended, the $CO_2$ was reduced at the highest of 4.0 mmol for MgO while it was not that much lower for CaO and $SiO_2$ showing 1.1 and 0.3 mmol $CO_2$2, respectively. For two types of minerals simultaneously amended, the $CO_2$ was reduced at the greater extent for both Ca + Mg and Mg + Si showing 2.7 and 2.3 mmol, respectively whereas it was less for Ca + Si at 1.8 mmol. For solidified sludge, the $CO_2$ reduction rate changed depending on the volume of solidified sludge placed in the medium and the input $CO_2$ concentration.. The reduction rate of $CO_2$ was increased with increasing the volume of solidified sludge. Results of XRD analysis indicate that $CaCO_3$ (Calcite) was dominantly formed among others (e.g., Aragonite, Dolomite). SEM analysis showed that the sample with Bacillus pasteurii, could more form minerals rather than control. As demonstrated in this study, $CO_2$ would be effectively sequestered in biomineralization process.

A Study on the Development of Self-Repairing Smart Concrete Using Microorganism (미생물(微生物)을 이용한 자기수부성(自己修復性) 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Chun, Woo-Young;Ko, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • This study was conducted to develop self-repairing ability for concrete so that inspection could be available even in the event of minute cracks, for more economic concrete structure maintenance and longevity. This is a basic attempt to develop self-repairing concrete using the biochemical reaction of bacteria through an innovative method. In this study, the characteristics and problems posed by self-repairing concrete as proposed in international scientific journals were examined, and the potential of new concrete reformation and performance improvement using bio-mineralization was explored. Bio-mineralization, which is an action of creating bio-minerals using an organism, was proposed. A new concept of bacteria such as bacillus pasteurii using bio-mineralization that precipitates calcium carbonate, as well as the possibility of mechanical performance and durability of concrete and repair of cracks, was introduced. Directions for further study through basic experiments and developmental feasibility of self-repairing concrete were also presented.

  • PDF

Solidification of Sandy Soils using Cementation Mechanism of Microbial Activity (미생물활성에 의한 시멘테이션 작용을 이용한 모래지반의 안정화)

  • Kim, Ki-Wook;Yun, Sung-Wook;Chung, Eu-Jin;Chung, Young-Ryun;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.169-176
    • /
    • 2014
  • To evaluate bio-cementation of microbial on sands, laboratory test was conducted using acrylic cubic molding boxes ($5cm{\times}5cm{\times}5cm$). It was incubated the microbial, called Bacillus Pasteurii, according to Park et al (2011, 2012). and applied 50ml each specimen. Two type of sand samples used were Jumoonjin sand and common sand (well graded). These sands were molded in acrylic boxes with the relative density of 30 % and 60 % respectively. Microbial were poured onto the samples molded in acrylic boxes and cured at the room temperature and humidity. After 7, 14 and 21days, it was measured the compressive strength, pH, EC, and density and it were observed SEM and XRD to verify the effect of bio-cementation. It was found that bio-cementation was increased a strength of sands and it was appeared that strengths were related to the type of sand and relative density. Therefore it was confirmed the solidification of sands using the bio-cementation by microbial activation and the usefullness of acrylic molding boxes when tests were conducted on the soil of sands.

Establishment of $F_0$-value Criterion for Canned Tuna in Cottonseed Oil (참치 기름담금 통조림의 $F_0$-값 설정에 관한 연구)

  • HAN Bong-Ho;CHO Hyun-Duck;YU Hong-Sik;KIM Sang-Ho;CHUNG Youn-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.675-681
    • /
    • 1994
  • [ $F_0$ ]-values of the canned tuna in cottonseed oil (CTCO) were investigated under different sterilizing conditions to optimize the energy consumption and microbiological safety. The $F_0$-values were measured using a microcomputer based technique. The exact cold point was not the volumetric center of the cans, and it was located in the center of meat mass in can which had ca. $6\%$ of head space. Location of the test cans in retort showed no remarkable influence on the $F_0$-values when the cans were jumble loaded. The process time before sterilization should be shortened as much as possible to prevent the contamination of microorganisms. Thermophilic spore forming bacteria found from raw and precooked tuna were Bacillus subtilis, Bacillus cereus and Bacillus pasteurii, and the most heat resistant was Bacillus subtilis. The rational $F_0$-value for the CTCO obtained from the preservation test was regarded as 6min.

  • PDF

Comparative Assessment on Indicating Factor for Biomineralization by Bacillus Species (Bacillus종의 생광물화에 미치는 영향 인자의 비교 평가)

  • Seok, Hee-Jeong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2013
  • This study was conducted to comparatively assess quantitative indicating factor for biomineralization characterizing $CO_2$ mineralization on three type of minerals (i.e., $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$) in an aqueous solution amended with Bacillus pasteurii or indigenous microorganisms for a S landfill cover soil. For given three types of minerals, $NH_4{^+}$ (urease activity) was released at the highest of 88 mg/L for $MgCl_2$, then 85 mg/L for $CaCl_2$, and the lowest of 42 mg/L for $CaCl_2-MgCl_2$. $CO_2$ gas in the head space was completely removed after 12, 12, and 24 hr for $CaCl_2$, $MgCl_2$ and $CaCl_2-MgCl_2$, respectively. $Ca^{2+}$ concentration in $CaCl_2$ solution was the quickest and the greatest decreased 92% for 12 hr whereas that in $CaCl_2-MgCl_2$ solution was lower at 85% for 36 hr. $Mg^{2+}$ concentration in $MgCl_2$ was more efficiently decreased at 46% for 48 hr than that of $CaCl_2-MgCl_2$ solution of 38.5% for 72 hr. Regardless of types of minerals or their concentration, pH was changed from 5.5 to 9 by biomineralization being progressed. Microbial activity ($OD_{600}$) was also changed from 0 to 0.6. SEM images indicated that spheroidal and trapezoid shape crystal were formed, which were identified as of $CaCO_3$ (Calcite) and $MgCO_3$ (Magnesite) by X-ray diffraction. In the long run, $NH_4{^+}$ (urease activity), $CO_2$ gas, $OD_{600}$, pH, $Ca^{2+}$ and $Mg^{2+}$ would be suitable for reasonable indicating factor in order to assess the degree of biomineralization efficiency.

Identification of Enteric Bacteria from Nephila clavata (한국산 무당거미(Nephila clavata)에서 분리한 장내 세균의 동정)

  • 문은영;오현우;맹필재;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Spiders are carnivores that prey upon insects and other small arthropods through digestion of food outside the body. Although spider poison may contain proteolytic enzymes, these are thought to play an insignificant role in actual digestion. The source of active proteolytic enzymes can be either the digestive tract cells of spider, or natural microbial flora in the digestive tract of spider. In this study, digestive tracts from the spider, Nephila clavata, were screened for bacteria that have protease or lipase activity. A total of $10^3-10^5$ CFU was recovered from a spider and more than 90% of them showed protease and lipase activity respectively. Of the microbial isolates, 63.3% showed protease or lipase activity, and 50% of these showed both protease and lipase activity. Some of the isolates were characterized using a battery of chemical, phenotypic and genotypic methods. Eleven Gram negative bacteriaa (Acinetobacter calcoaceticus, A. haemolyticus, Alcaligenes faecalis, Cedecea davisae, C. neteri, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas fluorescens, Serratia marcescens, Stenotrophomonas maltophilia, Suttonella indologenes) and 11 Gram positive bacteria (Bacillus cereus, B. coagulans, B. pasteurii, B. thuringiensis, Cellulomonas flavigena, Corynebacterium martruchotii, Enterococcus durans, E. faecalis, Micrococcus luteus, Staphylococcus hominis, S. sciuri) were identified.

  • PDF

Applicability of biocementation for organic soil and its effect on permeability

  • Sidik, Waleed S.;Canakci, Hanifi;Kilic, Ibrahim H.;Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.649-663
    • /
    • 2014
  • In past few years, the use of bacterial calcium carbonate precipitation (biocementation) has become popular as a ground improvement technique for sandy soil. However, this technique was not applied to organic soil. This study focused on bacterial calcium carbonate precipitation and its effect on permeability in organic soil. A special injection system was prepared for inducing bacterial solution to the samples. The bacterial solution supplied to the samples by gravity for 4 days in specific molds designed for this work. Calcite precipitation was observed by monitoring pH value and measuring amount of calcium carbonate. Change in the permeability was measured before and after biocementation. The test results showed that the pH values indicates that the treatment medium is appropriate for calcite precipitation, and amount of precipitated calcium carbonate in organic soil increased about 20% from untreated one. It was also found that the biocementation can be considered as an effective method for reducing permeability of organic soil. The results were supported by Scanning electron microscopy (SEM) analysis and energy-dispersive x-ray (EDX) analysis.

Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar

  • Park, Sung-Jin;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.385-389
    • /
    • 2012
  • The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.