• Title/Summary/Keyword: Bacillus licheniformis E1

Search Result 48, Processing Time 0.026 seconds

Optimization of Growth Medium Composition for Overproduction of Bacillus licheniformis Amylase in Recombinant Escherichia coli (Bacillus licheniformis amylase(BLMA)의 생산성 향상을 취한 재조합 대장균의 배지 최적화)

  • Nam, Seung-Hun;Lee, Woo-Jong;Byun, Tae-Gang;Seo, Jin-Ho;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.411-416
    • /
    • 1994
  • The research is concerned with optimization of growth medium composition in an attempt to improve the product yield of Bacillus licheniformis amylase (BLMA) in recombinant E. coli containing the BLMA gene. BLMA has the catalytic activity of producing branched oligosaccharides from starch. The medium optimization was performed in flask cultures based on the Box and Wilson method. The optimized medium is composed of tryptone 18.0 g/l, yeast extract 22.4 g/l, NaCl 5.3 g/l and glucose 2.1 g/l. In a jar fermenter culture with the conventional LB medium, the recombinant E. coli yielded 1.39 g/l of final dry cell mass and 5.11 U/ml of enzyme activity. In the optimized medium, however, the final cell mass was increased to 6.01 g/l and the enzyme activity to 23.2 U/ml. Medium optimization improved cell mass by 4.3 times and enzyme activity by 4.5 times. Such an increase in enzyme activity is mainly due to an enhancement of cell mass.

  • PDF

Effect of the Extracts from Fermented-Rhus verniciflua Stem Bark with Fomitella fraxinea on the Growth and Enzyme Activity of Soybean Product-fermenting Microorganisms (장수버섯 배양으로 제조한 발효옻 추출물이 장류 미생물의 증식 및 효소활성에 미치는 영향)

  • Choi, Han-Seok;Yeo, Soo-Hwan;Jeong, Seok-Tae;Choi, Ji-Ho;Kang, Ji-Eun;Kim, Myung-Kon
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • We studied the effect of fermented Rhus verniciflua stem bark (FRVSB) extract (used in herbal med-icine by Koreans) on the microbial growth and enzyme activity of 12 soybean-fermenting microorganisms, including Bacillus spp., lactic acid bacteria, yeast, and other harmful bacteria. The ethanol and methanol extracts of FRVSB inhibited the growth of Bacillus subtilis, Bacillus licheniformis, Bacillus cereus, and Zygosaccharomyces rouxii, and in the disk diffusion assay, their inhibition zone diameters were 11.06-12.23, 12.32-18.38, 11.47-11.84, and 13.59-14.21 mm, respectively. The water extract did not show any inhibitory effect. In fact, the water extract addition enhanced the growth of B. subtilis and B. licheniformis by 1.3-4.5 fold and that of B. cereus by 1.2-1.4 fold. However, the water extract did not affect the growth of Lactobacillus plantarum, Lactobacillus mesenteroides, Saccharomyces cer-evisiae, and Escherichia coli. The addition of water extract increased the amylase and protease activity of B. subtilis and B. licheniformis.

Potential for the Uptake and Removal of Arsenic [As (V) and As (III)] and the Reduction of As (V) to As (III) by Bacillus licheniformis (DAS1) under Different Stresses

  • Tripti, Kumari;Sayantan, D.;Shardendu, Shardendu;Singh, Durgesh Narain;Tripathi, Anil K.
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.238-248
    • /
    • 2014
  • The metalloid arsenic (Z = 33) is considered to be a significant potential threat to human health due to its ubiquity and toxicity, even in rural regions. In this study a rural region contaminated with arsenic, located at longitude $85^{\circ}$ 32'E and latitude $25^{\circ}$ 11'N, was initially examined. Arsenic tolerant bacteria from the rhizosphere of Amaranthas viridis were found and identified as Bacillus licheniformis through 16S rRNA gene sequencing. The potential for the uptake and removal of arsenic at 3, 6 and 9 mM [As(V)], and 2, 4 and 6 mM [As(III)], and for the reduction of the above concentrations of As(V) to As(III) by the Bacillus licheniformis were then assessed. The minimal inhibitory concentrations (MIC) for As(V) and As(III) was determined to be 10 and 7 mM, respectively. At 3 mM 100% As(V) was uptaken by the bacteria with the liberation of 42% As(III) into the medium, whereas at 6 mM As(V), 76% AS(V) was removed from the media and 56% was reduced to As(III). At 2 mM As(III), the bacteria consumed 100%, whereas at 6 mM, the As(III) consumption was only 40%. The role of pH was significant for the speciation, availability and toxicity of the arsenic, which was measured as the variation in growth, uptake and content of cell protein. Both As(V) and As(III) were most toxic at around a neutral pH, whereas both acidic and basic pH favored growth, but at variable levels. Contrary to many reports, the total cell protein content in the bacteria was enhanced by both As(V) and As(III) stress.

Production of Antibacterial Violet Pigment by Psychrotropic Bacterium RT102 Strain

  • Nakamura, Yoshitoshi;Asada, Chikako;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.37-40
    • /
    • 2003
  • The antibacterial action of violet pigment, a mixture of violacein and deoxyviolacein, isolated from phychrotrophic bacterium RT102 strain was examined, and the operational conditions for the effective production of violet pigment were studied. The antibacterial activity of the violet pigment was confirmed for several bacteria such as Bacillus licheniformis, Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Pseudomonas aeruginosa, and the high concentration of violet pigment, above about 15mg/L, caused not only growth inhibition but also death of cells. The growth properties of RT102 strain were clarified under various incubation conditions such as pH, temperature, and dissolved oxygen concentration. The maximum violet pigment concentration, i.e. 3.7 g/L, and the maximum productivity of violet pigment, i.e. 0.12 g .L$\^$-1/H$\^$-1/, were obtained in a batch culture of pH 6, 20$^{\circ}C$, and 1 mg/L of dissolved oxygen concentration.

Two-Step Fed-Batch Culture of Recombinant Escherichia coli for Production of Bacillus licheniformis Maltogenic Amylase

  • Kim, Myoung-Dong;Lee, Woo-Jong;Park, Kwan-Hwa;Rhee, Ki-Hyeong;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.273-278
    • /
    • 2002
  • Two-step fed-batch fermentations were carried out to overproduce Bacillus licheniformis maltogenic amylase (BLMA) in recombinant Escherichia coli. The first step was to increase the cell mass by controlling the feeding of a glucose solution, while the second step was designed to improve the amylase expression efficiency by supplementing organic nitrogen sources. The linear gradient feeding method was successfully adopted to maintain the glucose concentration below 0.2 g/l during the fed-batch mode, as effectively minimizing acetic acid formation. When the dissolved oxygen (DO) level became limiting, an accumulation of acetic acid and drastic decrease in specific BLMA productivity were observed. Glucose and organic nitrogen sources consisting of yeast extract and casein hydrolysate were simultaneously supplied in the pH-stat mode to further increase the specific BLMA expression efficiency. An organic nitrogen source consisting of 200 g/1 yeast extract and 100 g/1 casein hydrolysate was found to be the best among the various combinations tested. The feeding of an organic nitrogen source in the second-step fed-batch period was highly beneficial in enhancing the BLMA production. The optimized two-step fed-batch culture resulted in 78 g/l maximum dry cell mass and 443 U/ml maximum BLMA activity, corresponding to 1.5-fold increase in the dry cell mass and 3.7-fold enhancement in BLMA production, compared with the simple fed-batch fermentation.

Isolation of Bacteria Producing a B-Cell-Specific Biological Response Modifier Found in Korean Fermented Soybean Paste

  • CHUNG KUN SUB;KIM JOO YOUNG;HONG SUNG WOOK;LEE BONG KI
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.126-135
    • /
    • 2006
  • In a previous study, a biological response modifier (BRM) specifically enhancing the function of B-cells was isolated from Korean fermented soybean paste (Kfsp), but not from non-fermented soybeans. In this study, we attempted to isolate the bacteria producing the BRM from Kfsp (KfspBRM) by ELISA using anti-KfspBRM and by B-cell proliferation. Five bacteria whose culture supernatants showed the BRM activities were isolated, and one of them was identified as Bacillus licheniformis E1. The bacterial BRM (bBRM) originated from a slime layer of B. licheniformis El had a molecular weight of 1,594 kDa, and contained $33\%\;(w/w)$ of reduced sugar and $4.6\%\;(w/w)$ of protein content. The bBRM appeared to be a glycoprotein that is physically, structurally, and functionally similar to the KfspBRM, suggesting that the isolates including B. licheniformis El may produce the KfspBRM in the fermentation process of soybean paste. The mass production of the BRM by the bacterium may help to study B-cells in immunology, and the enrichment of the BRM in Kfsp may help patients in future who are medically in need of potentiation of B-cell proliferation and antibody production.

Overexpression and characterization of thermostable chitinase from Bacillus atrophaeus SC081 in Escherichia coli

  • Cho, Eun-Kyung;Choi, In-Soon;Choi, Young-Ju
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2011
  • The chitinase-producing strain SC081 was isolated from Korean traditional soy sauce and identified as Bacillus atrophaeus based on a phylogenetic analysis of the 16S rDNA sequence and a phenotypic analysis. A gene encoding chitinase from B. atrophaeus SC081 was cloned in Escherichia coli and was named SCChi-1 (GQ360078). The SCChi-1 nucleotide sequences were composed of 1788 base pairs and 596 amino acids, which were 92.6, 89.6, 89.3, and 78.9% identical to those of Bacillus subtilis (ABG57262), Bacillus pumilus (ABI15082), Bacillus amyloliquefaciens (ABO15008), and Bacillus licheniformis (ACF40833), respectively. A recombinant SCChi-1 containing a hexahistidine tag at the amino-terminus was constructed, overexpressed, and purified in E. coli to characterize SCChi-1. $H_6SCChi$-1 revealed a hydrolytic band on zymograms containing 0.1% glycol chitin and showed the highest lytic activity on colloidal chitin and acidic chitosan. The optimal temperature and pH for chitinolytic activity were $50^{\circ}C$ and pH 8.0, respectively.

Isolation and characterization of a Bacillus spp. for manufacturing the feed additives in livestock (가축의 보조사료 개발을 위한 Bacillus spp.의 분리 및 특성)

  • Park, Hae Suk;Jo, Seung Wha;Yim, Eun Jung;Kim, Yun Sun;Moon, Sung Hyun;Cho, Ho Seong;Kim, Hyun-Young;Cho, Yong Sik;Cho, Sung Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The aims of this study were to isolate spore-forming Bacillus strains that exhibit high digestibility and anti-pathogenic bacteria toward feed for calves. Total 136 spore-forming strains were isolated from finished feeds and their ingredients. Among them, 93 strains were identified as Bacillus species when analyzed by 16S rRNA sequencing. For industrial use, three strains named as Bacillus licheniformis SHS14, B. subtilis LCB7, B. amyloliquefaciens LCB10 were selected after evaluating the industrial standards that are related with heat and acid resistance, enzyme activities, and anti-pathogenic activities against Samonella dublin ATCC15480 and E. coli K99. After each culture, 3 selected strains were mixed together at 1:1:1 (v/v/v) ratio and then prepared as the mixed starter culture for feeding. The changes in microbial community were analyzed via 16S rRNA metagenomics. The initial community ratio among three strains was maintained even after manufacturing into final products. Also, in vitro, enzymatic and anti-pathogenic activities were almost same as those when cultured in single culture, and results of anti-pathogenic activities conducted with calves showed 90% activities against lincomycin, which would be indicative of a promising feed starter.

Molecular Cloning and Characterization of the secY Homolog from Streptomyces lividans TK24 (Streptomyces lividans Tk24에서 secY homolog의 클로닝과 분석)

  • 김순옥;서주원
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.110-116
    • /
    • 1998
  • The secY gene of Streptomyces lividans TK24 was cloned by the PCR method with synthetic oligonucleotide primers designed on the basis of the conserved regions of Ll5-secY-adk operon from E. coli, B. subtilis, and M luteus. The deduced amino acid sequences of the SecY are highly homologous to those of other known SecY. It has 46%, 43%, 57%, 44%, 42%,56%, 90% similarity to Escherichia coli, Bacillus subtilis, Micrococcus luteus, Bacillus licheniformis Staphylococcus carnosus, Brevibacterium flavum, Streptomyces scabies, respectively and almost the same with Streptomyces coelicolor, The gene organization of Ll5- SecY-Adk is also similar to those of other bacteria. SecY and Adk are very likely translationally coupled that is overlapping stop codon of SecY and start codon of Adk with one base pair, which is common structure among high GC content strains of gram positive bacteria.

  • PDF

Biological Control of Gray Mold Rot of Perilla Caused by Boftis cinerea 1. Resistance of Perilla Cultivars and Selection of Antagonistic Bacteria

  • Moon, Byung-Ju;Son, Yeong-Jun;Lee, Jae-Pil;Kim, Choul-Seung;Song, Ju-Hee;Kim, Hyun-Ju;Kim, Jae-Woo;Kim, Do-Hoon;Park, Hyean-Cheal
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Resistance of perilla varieties to Botrytis cinerea LVF12 was evaluated, while antagonistic bacteria were selected and tested for their efficacy towards biological control of gray mold rot caused by B. cinerea. Among 11 perilla varieties tested for disease resistance, Milyang variety showed some degree of resistance, while the rest of varieties showed no resistance. Among 250 bacterial isolates collected from perilla loaves and rhizosphere of perilla plants, six isolates showed high levels of inhibitory effect on mycelial growth and conidial germination of B. cinerea in in vitro test. Using the pot test in growth chambers these isolates showed high levels of disease suppression, with Nl isolate showing 95.3% of control value and N4 isolate showing 90.8% of control value. Further test was performed to evaluate the two isolates ability for disease prevention and/or disease therapy, and results showed almost 100% of control vague. Isolates Nl and N4 were identified as Bacillus licheniformis and 5. megatepium, respectively, according to Bergey's manual, API 20E and 50CHB test kit, and Transmission electron microscope.