DOI QR코드

DOI QR Code

Biological Control of Gray Mold Rot of Perilla Caused by Boftis cinerea 1. Resistance of Perilla Cultivars and Selection of Antagonistic Bacteria

  • Moon, Byung-Ju (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Son, Yeong-Jun (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Lee, Jae-Pil (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Kim, Choul-Seung (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Song, Ju-Hee (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Kim, Hyun-Ju (Raculty of Natural Resource and Life Science, Dong-A University) ;
  • Kim, Jae-Woo (Department of Clinical Laboratory, Dong-A University Hospital) ;
  • Kim, Do-Hoon (Department of Plant Pathology, University of California, Riverside) ;
  • Park, Hyean-Cheal (Department of Plant Pathology, University of California, Riverside)
  • Published : 2002.02.01

Abstract

Resistance of perilla varieties to Botrytis cinerea LVF12 was evaluated, while antagonistic bacteria were selected and tested for their efficacy towards biological control of gray mold rot caused by B. cinerea. Among 11 perilla varieties tested for disease resistance, Milyang variety showed some degree of resistance, while the rest of varieties showed no resistance. Among 250 bacterial isolates collected from perilla loaves and rhizosphere of perilla plants, six isolates showed high levels of inhibitory effect on mycelial growth and conidial germination of B. cinerea in in vitro test. Using the pot test in growth chambers these isolates showed high levels of disease suppression, with Nl isolate showing 95.3% of control value and N4 isolate showing 90.8% of control value. Further test was performed to evaluate the two isolates ability for disease prevention and/or disease therapy, and results showed almost 100% of control vague. Isolates Nl and N4 were identified as Bacillus licheniformis and 5. megatepium, respectively, according to Bergey's manual, API 20E and 50CHB test kit, and Transmission electron microscope.

Keywords

References

  1. Choi, Y. C. 1990. Control of fungal diseases with antagonistic bacteria, Bacillus sp. AC-l. pp. 50-61. In: Proc. Int. Symp. Biological Control of Plant Diseases
  2. Debao, L. 1994. Biological control of plant diseases with Bacillus species. pp. 75-85. In: Proc. Int. Symp. BioIogical Control of Plant Diseases
  3. El Ghaouth, A., Wilson, C. L. and Wisniewski, M. E. 1995. Sugar analogs as potential fungicides for postharvest pathogens of apple and peach. Plant Dis. 79:254-258 https://doi.org/10.1094/PD-79-0254
  4. Filonow, A. B., Vishniac, H. S., Anderson, J. A. and Janisiewicz, W. J. 1996. Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological ControI 7:212-220 https://doi.org/10.1006/bcon.1996.0086
  5. Fravel, D. R., Connick Jr, W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. Formulation of microbial biopesticides. 412 p
  6. Galvez, A., Maqueda, M., Mardnez-Bueno, M., Lebbadi, M. and Valdivia, E. 1993. Isolation and physico-chemical Characterization of an antifungal and antibactehal peptide produced by BaciIIus licheniformis A12. MicrobioI. BiotechnoI. 39:438-442 https://doi.org/10.1007/BF00205029
  7. Gould, A. B., Kobayashi, D. Y. and Bergen, M. S. 1996. Identification of bacteria for biological control of Botrytis cinerea on petunia using a petal disk assay. Plant Dis. 80:1029-1033 https://doi.org/10.1094/PD-80-1029
  8. Harman, G. E., Latorre, B., Agosin, E., San Martin, R., Riegel, D. G., Nielsen, P. A., Tronsmo, A. and Pearson, R. C. 1996. Biological and integrated control of Botrytis bunch rot of grape using Trichoderma spp. Biological Control 7:259-266 https://doi.org/10.1006/bcon.1996.0092
  9. Hammer, P. E., Evensen, K. B. and Janisiewicz, W. J. 1993. Postharvest control of Botrytis cinerea on cut rose flowers with pyrrolnitrin. PIant Dis. 77:283-286 https://doi.org/10.1094/PD-77-0283
  10. Janisiewicz, W. J. and Poitman, J. 1988. Biological control of blue mold and gray mold apple and pear with Pseudomonas cepacia. Phytopathology 78:1697-1700 https://doi.org/10.1094/Phyto-78-1697
  11. Johnson, K. B., Sawyer, T. L. and Powelson, M. L. 1994. Frequency benzimidazole- and dicarboximide-resistant strains of Botrytis cinerea in western oregon small fruit and snap bean plantings. Plant Dis. 78:572-577. https://doi.org/10.1094/PD-78-0572
  12. Katsumi, A., Keido, K. and Tomomasa, M. 1981a. Role of conidial fusion in infection by Botrytis cinerea on cucumber leaves. Ann. Phytopath. Soc. Japan 47:15-23 https://doi.org/10.3186/jjphytopath.47.15
  13. Katsumi, A., Yumiko, K., Yasuhide, M., Tadakazu, W., Keido, K. and Tomomasa, M. 1981b. Morphological studies on infection process of cucumber leaves by conidia of Botrytis cinerea stimulated with various purine-related compounds. Ann. Phytopath. Soc. Japan 47:234-243 https://doi.org/10.3186/jjphytopath.47.234
  14. Katsumi, A., Yasumasa, T, Hajime, S. and Satoshi, 0. 1987a. Stimulative effect of potassium phosphate on infection of cucumber leaves by conidia of Botrytis cinerea. Ann. Phytopath. Soc. Japan 53:175-181 https://doi.org/10.3186/jjphytopath.53.175
  15. Katsumi, A., Makoto, U., Tatsuyuki, I. and Satoshi, O. 1987b. Multicellular appressoria and terminal sclerotia formed by Botrytis cinerea. in infection process. Ann. Phytopath. Soc. Japan 53:45-52 https://doi.org/10.3186/jjphytopath.53.45
  16. $K\ddot{o}hl,$ J., Gerlagh, M., De Haas, B. H. and Krijger, M. C. 1998.Biological control of Botrytis cinerea in cyclamen with Ulo-cladium atrum and Gliocladium roseum under commercialgrowing conditions. Phytopatholoey 88:568-575 https://doi.org/10.1094/PHYTO.1998.88.6.568
  17. Kim, B. S. 1997. Fungicide resistance and physiological and eco-logical diversity of Botrytis cinerea. Ph.D. thesis, Seoul Nat'lUniv. Suwon, Korea
  18. Kim, B. S., Park, E. W., Park, J. H., Roh, S. H. and Cho, K. Y.1996. Induction of prochloraz-resistant isolates of Botrytiscinerea in vitro and their biological properties. Korean J. PlantPathol. 12:226-230
  19. Kim, B. S., Park, E. W., Roh, S. H. and Cho, K. Y. 1997. Physio-logical diversity between morphological phenotypes of Botry-tis cinerea. Korean J. Mycology 25:320-329
  20. Kim, K. C. 1999. A theory of disease diagnoses and control for Cucurbitaceae crop. Chonnam National University Press. 702 p.
  21. Ministry of Science & Technology. 1992. Development of newbio- fungicide for control of gray mold rot on strawberry. 91 p.
  22. Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M. and Valdivia, E. 1994. A narrow spectrum peptide andbiotic fromBacillus licheniformis M-4. Bacteriolosy 77:49-53
  23. Moon, B. J., Roh, S. H., Son, Y. J., Kang. H. S., Lee, J. R, Kim, B.S. and Chung, D. S. 1998. Occurrence of gray mold rot ofperilla caused by Botrytis cinerea. Korean J. Plant Pathol. 14:467-472
  24. Moon, B. J. 1999. Development for quality, high yield productionand labor saving culture of leaf perilla around Nakdong River.Occurrence, isolation and identification of several diseases ofperilla and biological control by antagonistic bactena. Ministry of Agriculture and Forestry - Research Transactions. 277 p.
  25. Nari, M., Guizzardi, M. and Pratella, G. C. 1996. Biological con-ol of gray mold in pears by antagonistic bacteria. BiologicalControl 7:30-37
  26. Noboru, S. and Yoshihachi, W. 1985. Comparison of infectionprocess of Botrytis cinerea on cucumber cotyledon and Straw-berry petal. Ann. phytopath. Soc. Japan 51:501-505 https://doi.org/10.3186/jjphytopath.51.501
  27. Korean Agricultural Chemical Industrial Association. 1997. Astatute book to be connected with chemicals. 343 p.
  28. Korean Aghcultural Chemical Industrial Association, 2001. Astatute book to be connected with chemicals. 69 p.
  29. Raposo, R., Colgan, R., Delcan, J. and Melgarejo, P. 1995. Appli-cation of an automated quantitative method to determine fun-gicide resistance in Botrytis cinerea. Plant Dis. 79:294-296 https://doi.org/10.1094/PD-79-0294
  30. Sutton, J. C. and Peng, G. 1993. Biocontrol of Botrytis cinerea instrawberry leaves. Phytopathology 83:615-621 https://doi.org/10.1094/Phyto-83-615
  31. Yu, H. and Sutton, J. C. 1997. Effectiveness of bumblebees andhoneybees for delivering inoculum of Gliodadium roseum toraspberry flowers to control Botrytis cinerea. Biological Con-trol 10:113-122 https://doi.org/10.1006/bcon.1997.0562
  32. Zimand, G., Elad, Y. and Chet, I. 1996. Effect of Trichodermaharzianum on Botrytis cinerea pathogenicity. Phytopathology86:1255-1260 https://doi.org/10.1094/Phyto-86-1255

Cited by

  1. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea vol.37, pp.3, 2006, https://doi.org/10.1016/j.biocontrol.2006.01.001
  2. Comparative efficacy of thermophilic bacterium,Bacillus licheniformis(NR1005) and antagonistic fungi,Trichoderma harzianumto controlPythium aphanidermatum-induced damping off in chilli (Capsicum annuumL.) vol.44, pp.11, 2011, https://doi.org/10.1080/03235401003755262
  3. Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.257
  4. Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries vol.58, pp.4, 2013, https://doi.org/10.1007/s10526-012-9503-x