• 제목/요약/키워드: Bacillus halodurans

검색결과 11건 처리시간 0.028초

Functional Expression and Characterization of Acetyl Xylan Esterases CE Family 7 from Lactobacillus antri and Bacillus halodurans

  • Kim, Min-Jeong;Jang, Myoung-Uoon;Nam, Gyeong-Hwa;Shin, Heeji;Song, Jeong-Rok;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.155-162
    • /
    • 2020
  • Acetyl xylan esterase (AXE; E.C. 3.1.1.72) is one of the accessory enzymes for xylan degradation, which can remove the terminal acetate residues from xylan polymers. In this study, two genes encoding putative AXEs (LaAXE and BhAXE) were cloned from Lactobacillus antri DSM 16041 and Bacillus halodurans C-125, and constitutively expressed in Escherichia coli. They possess considerable activities towards various substrates such as p-nitrophenyl acetate, 4-methylumbelliferyl acetate, glucose pentaacetate, and 7-amino cephalosporanic acid. LaAXE and BhAXE showed the highest activities at pH 7.0 and 8.0 at 50℃, respectively. These enzymes are AXE members of carbohydrate esterase (CE) family 7 with the cephalosporine-C deacetylase activity for the production of antibiotics precursors. The simultaneous treatment of LaAXE with Thermotoga neapolitana β-xylanase showed 1.44-fold higher synergistic degradation of beechwood xylan than the single treatment of xylanase, whereas BhAXE showed no significant synergism. It was suggested that LaAXE can deacetylate beechwood xylan and enhance the successive accessibility of xylanase towards the resulting substrates. The novel LaAXE originated from a lactic acid bacterium will be utilized for the enzymatic production of D-xylose and xylooligosaccharides.

Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit;Lee Yun-Sik;Rantanakhanokchai Khanok;Pinitglang Surapong;Kyu Khin Lay;Rho Min-Suk;Lee Si-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.613-618
    • /
    • 2006
  • Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

Expression of Cyclomaltodextrinase Gene from Bacillus halodurans C-125 and Characterization of Its Multisubstrate Specificity

  • Kang, Hye-Jeong;Jeong, Chang-Ku;Jang, Myoung-Uoon;Choi, Seung-Ho;Kim, Min-Hong;Ahn, Jun-Bae;Lee, Sang-Hwa;Jo, Sook-Ja;Kim, Tae-Jip
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.776-781
    • /
    • 2009
  • A putative cyclomaltodextrinase (BHCD) gene was found from the genome of Bacillus halodurans C-125, which encodes 578 amino acids with a predicted molecular mass of 67,279 Da. It shares 42-59% of amino acid sequence identity with common cyclomaltodextrinase (CDase)-family enzymes. The corresponding gene was cloned by polymerase chain reaction (PCR) and the dimeric enzyme with C-terminal 6-histidines was successfully overproduced and purified from recombinant Escherichia coli. BHCD showed the highest activity against ${\beta}-CD$ at pH 7.0 and $50^{\circ}C$. Due to its versatile hydrolysis and transglycosylation activities, BHCD has been confirmed as a member of CDases. However, BHCD can be distinguished from other typical CDases on the basis of its novel multisubstrate specificity. While typical CDases have over 10 times higher activity on ${\beta}-CD$ than starch or pullulan, the CD-hydrolyzing activity of BHCD is only 2.3 times higher than pullulan. In particular, it showed significantly higher activity ratio of maltotriose to acarbose than other common CDase-family enzymes.

3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.941-946
    • /
    • 2007
  • Bacillus halodurans O-methyltransferase (BhOMT) is a S-adenosylmethionine (SAM or AdoMet) dependent methyltransferase. Three dimensional structure of the BhOMT bound to S-adenosyl-L-homocysteine (SAH or AdoHcy) has been determined by comparative homology modeling. BhOMT has 40% sequence identity with caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) from alfalfa. Based on x-ray structure of CCoAOMT, three dimensional structure of BhOMT was determined using MODELLER. The substrate binding sites of these two proteins showed slight differences, but these differences were important to characterize the substrate of BhOMT. Automated docking study showed that four flavonoids, quercetin, fisetin, myricetin, and luteolin which have two hydroxyl groups simultaneously at 3'- and 4'-position in the B-ring and structural rigidity of Cring resulting from the double bond characters between C2 and C3, were well docked as ligands of BhOMT. These flavonoids form stable hydrogen bondings with K211, R170, and hydroxyl group at 3'-position in the Bring has stable electrostatic interaction with Ca2+ ion in BhOMT. This study will be helpful to understand the biochemical function of BhOMT as an O-methyltransferase for flavonoids.

Cloning and Expression of the Aminopeptidase Gene from the Bacillus lichenformis In Bacillus subtilis

  • Kim, Jin-Sook;Lee, In-Soo;Lee, Seung-Won;Lee, Young-Phil;Jung, Chul-Ho;Kim, Hyung-Cheol;Choi, Soon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.773-779
    • /
    • 2002
  • A gene (hap) encoding aminopeptidase from the chromosomal DNA of Bacillus licheniformis was cloned. The gene is 1,347 bp long and encodes a 449 amino acid preproprotein with a major mature region of 401 amino acids (calculated molecular mass 43,241 Da). N-Terminal sequence of the purified protein revealed a potential presence of N-terminal propeptide. The deduced primary amino acid sequence and the mass analysis of the purified protein suggested that a C-terminal peptide YSSVAQ was also cleaved off by a possible endogeneous protease. Tho amino acid sequence displayed 58% identity with that of the aminopeptidase from alkaliphilic Bacillus halodurans. This bacterial enzyme was overexpressed in recombinant Escherichia coli and Bacillus subtilis cells. Clones containing the intact hap gene, including its own promoter and signal sequence, gave rise to the synthesis of extracellular and thrmostable enzyme by B. subtilis transformants. The secreted protein exhibited the same biochemical properties and the similar apparent molecular mass as the B. lichenzyormis original enzyme.

Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase

  • Jeong, Ki-Woong;Lee, Jee-Young;Kang, Dong-Il;Lee, Ju-Un;Hwang, Yong-Sic;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1311-1314
    • /
    • 2008
  • Bacillus halodurans O-methyltransferase (BhOMT) is an S-adenosylmethionine dependent methyltransferase. In our previous study, three dimensional structure of the BhOMT has been determined by comparative homology modeling and automated docking study showed that two hydroxyl groups at 3'- and 4'-position in Bring and structural rigidity of C-ring resulting from the double bond characters between C2 and C3 of flavonoid, were key factors for interaction with BhOMT. In the present study, BhOMT was cloned and expressed. Binding assay was performed on purified BhOMT using fluorescence experiments and binding affinity of luteolin, quercetin, fisetin, and myricetin were measured in the range of $10^7$. Fluorescence quenching experiments indicated that divalent cation plays a critical role on the metal-mediated electrostatic interactions between flavonoid and substrate binding site of BhOMT. Fluorescence study confirmed successfully the data obtained from the docking study and these results imply that hydroxyl group at 7-position of luteolin, quercetin, fisetin, and myricetin forms a stable hydrogen bonding with K211 and carboxyl oxygen of C-ring forms a stable hydrogen bonding with R170. Hydroxyl group at 3'-and 4'-position in the B-ring also has strong $Ca^{2+}$ mediated electrostatic interactions with BhOMT.

제한효소 생성능을 지닌 알칼리성 Bacillus sp. 8-13 균주로부터 알칼리성 제한효소의 정제 (Purification of Alkaline Restriction Endonuclease from Alkalophilic Bacillus sp. 8-13)

  • 배무;이지은;박경숙;이강만
    • 한국미생물·생명공학회지
    • /
    • 제20권3호
    • /
    • pp.289-294
    • /
    • 1992
  • 토양에서 분리한 여러 알칼리성 세균을 대상으로 제한효소의 유무를 조사하여 Bacillu sp. 8-13으로부터 제한효소의 활성을 발견할 수 있었다. 이 균주의 제한효소는 streptomycin sulfate 침전, ammonium sulfate 침전, DEAD-cellulose와 phosphocellulose ion exchange colum chromatography와 phosphocellulose ion exchange colum chromatography 과정을 통하여 정제하였고 0.1 SDS를 포함하는 7.5 polyacrylamide gel electrophoresis로 subunit의 분잘량을 조사한 결과 약 32,000 dalton이었다. 또 특히 이 균주는 형태적 배양학적 특성이 Bacillus alkalophilus subsp. haldurans와 매우 유사하며, 최적 생육, pH는 10.3이었고, 최적 증식온도는 $50^{\circ}C$ 이었다.

  • PDF

극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구 (Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge)

  • 최선규;채경헌;박성식
    • 한국지반공학회논문집
    • /
    • 제31권1호
    • /
    • pp.37-46
    • /
    • 2015
  • 본 연구에서는 고로슬래그의 수화반응을 일으키는 극한미생물(Bacillus halodurans) 알칼리 활성화제를 사용하여 현장 지반을 고결시키는 연구를 수행하였다. 현장 토사를 고결시키기 위해 저가의 미생물 배양액을 대량으로 제조하였으며, 제조된 미생물 배양액에 대한 생장실험을 실시하여 기존 미생물 배양액과의 효율성을 비교하였다. 현장 적용은 고로슬래그와 미생물 배양액을 혼합한 알칼리 활성화제로 고결된 지반(미생물 고결토), 보통 포틀랜드 시멘트로 고결된 지반(시멘트 고결토), 그리고 무처리된 지반(무처리토)으로 나누어 시험 시공하였다. 현장 지반 3곳 모두 동일한 크기인 가로 2.6m, 세로 4m, 깊이 0.2m로 시공하였다. 현장 시공 후 28일에 코어를 채취하여 일축압축시험을 실시하였으며, 무처리토 지반은 토베인시험으로 지반의 강도를 평가하였다. 본 연구에서 개발한 미생물 고결토는 시멘트 고결토에 비해 약 1/5 정도 낮은 강도를 보였으나, 무처리토에 비해서는 약 6배 정도 높은 강도를 발휘하였다. 또한, 미생물 고결토의 pH는 10으로 11 이상인 시멘트 고결토보다 낮아 상대적으로 친환경적인 것으로 판단되었으며, SEM-EDS 분석을 통하여 고결도와 고결 물질인 C-S-H 수화물이 생성됨을 확인할 수 있었다.

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination

  • Jiang, Wei;Wang, Yali
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.146-154
    • /
    • 2020
  • With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.