• Title/Summary/Keyword: B_1$

Search Result 50,570, Processing Time 0.076 seconds

Differences in Their Proliferation and Differentiation between B-1 and B-2 Cell

  • Yeo, Seung-Geun;Cha, Chang-Il;Park, Dong-Choon
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Background: B cell subset has been divided into B-1 cells and B-2 cells. B-1 cells are found most prominently in the peritoneal cavity, as well as constituting a small pro portion of splenic B cells and they are larger and less dense than B-2 cells in morphology. This study was designed to compare the differences in their proliferation and differentiation between B-1 and B-2 cell. Methods: We obtained sorted B-1 cells from peritoneal fluid and B-2 cells from spleens of mice. Secreted IgM was measured by enzyme-linked immunosorbent assay. Entering of S phase in response to LPS-stimuli was measured by proliferative assay. Cell cycle analysis by propidium iodide was performed. p21 expression was assessed by real time PCR. Results: Cell proliferation and cell cycle progression in B-1 and B-2 cells, which did not occur in the absence of LPS, required LPS stimulation. After LPS stimulation, B-1 and B-2 cells were shifted to Sand G2/M phases. p21 expression by resting B-1 cells was higher than that of resting B-2 cells. Conclusion: B-1 cells differ from conventional B-2 cells in proliferation, differentiation and cell cycle.

Studies on the Immunomodulatory Effect Using Combinations of Several Kinds of Anti-cancer Prescriptions (수종 항암 처방의 조합에 따른 면역조절 작용에 관한 연구)

  • Baik Myung hyun;Park Jong Dae;Lee Yong Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.157-166
    • /
    • 2004
  • In order to understand the anti-carcinogenic effects of Boo-jung-bae-bon-bang(扶正培本方)-B1), Hwal-hyul-hwa-eo-bang(活血化瘀方-B2), Cheong-youl-hae-dok-bang(淸熱解毒方-B3), prescriptions of individual B1, B2, and B3 treatments or combined treatments (B4; B1+B2, B5; B1+B3, B6; B1+B2+83, B7; B2+83) were applied to cultured cancer cell lines. The major findings on their anti-cardnogenic effects in terms of mechanism and synergistic interactions are summarized below. Results of cytokine gene expression analyses are summarized as follows; IL-2 gene expression was increased by B1 and B6 treatments, IFN-v gene expression increased by B3, B1, B6, and 85, and CD28 gene expression increased by B1 and B5. IL-4 expression was not affected by any treatments. In the FACS analysis, increases in numbers of immunoreactive CD3/sup +//CD25/sup +/ T cells by B1 and B5 treatment, CD3/sup +//CD69/sup +/ T cells by B1, B3, B5, and B6 treatments, CD19/sup +//CD44/sup +/ B cells by B1 and B6 treatments were observed when compared to the corresponding non-treated control groups.

1,4-Dicyanobutene Bridged Binuclear Iridium (I, III) Complexes and Their Catalytic Activities

  • Park, Hwa-Kun;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.185-189
    • /
    • 1987
  • Reactions of $Ir(ClO)_4(CO)(PPh_3)_2$ with dicyano olefins, cis-NCCH = CH$CH_2$$CH_2$CN (cDC1B), trans-NCCH = CH$CH_2$$CH_2$CN (tDC1B), trans-NC$CH_2$CH = CH$CH_2$CN (tDC2B), and NC$CH_2$$CH_2$$CH_2$$CH_2$CN (DCB) produce binuclear dicationic iridium (I) complexes, $[(CO)(PPh_3)_2Ir-NC-A-CN-Ir(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (1a), tDC1B (1b), tDC2B (1c), DCB (1d)). Complexes 1a-1d react with hydrogen to give binuclear dicationic tetrahydrido iridium (Ⅲ ) complexes, $[(CO)(PPh_3)_2(H)_2Ir-NC-A-CN-Ir(H)_2(PPh_3)_2(CO)](ClO_4)_2$ (NC-A-CN = cDC1B (2a), tDC1B (2b), tDC2B (2c), DCB (2d)). Complexes 2a and 2b catalyze the hydrogenation of cDC1B and tDC1B, respectively to give DCB, while the complex 2c is catalytically active for the isomerization of tDC2B to give cDC1B and tDC1B and the hydrogenation of tDC2B to give DCB at $100^{\circ}C$.

Some Optimal Convex Combination Bounds for Arithmetic Mean

  • Hongya, Gao;Ruihong, Xue
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.521-529
    • /
    • 2014
  • In this paper we derive some optimal convex combination bounds related to arithmetic mean. We find the greatest values ${\alpha}_1$ and ${\alpha}_2$ and the least values ${\beta}_1$ and ${\beta}_2$ such that the double inequalities $${\alpha}_1T(a,b)+(1-{\alpha}_1)H(a,b)<A(a,b)<{\beta}_1T(a,b)+(1-{\beta}_1)H(a,b)$$ and $${\alpha}_2T(a,b)+(1-{\alpha}_2)G(a,b)<A(a,b)<{\beta}_2T(a,b)+(1-{\beta}_2)G(a,b)$$ holds for all a,b > 0 with $a{\neq}b$. Here T(a,b), H(a,b), A(a,b) and G(a,b) denote the second Seiffert, harmonic, arithmetic and geometric means of two positive numbers a and b, respectively.

B-1 Cells Differ from Conventional B (B-2) Cells: Difference in Proliferation (B세포의 증식에 있어 B-1 임파구와 B-2 임파구의 차이점에 대한 연구)

  • Yeo, Seung Geun;Cho, Joong Saeng;Park, Dong Choon;Rothstein, Thomas L.
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.155-160
    • /
    • 2004
  • Background: B-1 cells differ from conventional B-2 cells both phenotypically and functionally. The aim of this study was to investigate the difference between peritoneal B-1 cells and splenic B-2 cells in proliferation. Methods: We obtained sorted B-1 cells from peritoneal fluid and B-2 cells from spleens of mice. During the culture of these cells, immunoglobulin secreted into the culture supernatants was evaluated by enzymelinked immunosorbent assay. Entering of S phase in response to LPS-stimuli was measured by proliferative assay. Results: Spontaneous Immunoglobulin M production occurred in peritoneal B-1 cells but not in splenic B-2 cells. LPS stimulated peritoneal B-1 cells secreted IgM at day 1, but splenic B-2 cells at day 2. In thymidine incorporation, peritoneal B-1 cells entered actively S phase after 24hours LPS-stimulation but splenic B-2 cells entered actively S phase after 48 hours. Conclusion: IgM secretion and S phase entering occurred early in peritoneal B-1 cells compared to splenic B-2 cells.

Evaluation of the Probiotic Potential of Microorganisms Isolated from the Intestinal Tract of Cultured Epinephelus akaara (양식 붉바리 장관에서 분리된 미생물의 프로바이오틱 잠재력 평가)

  • Young-Gun Moon;Moon-Soo Boo;Chi-Hoon Lee;Jin-Kuk Park;Moon-Soo Heo
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • This study focused on isolating and identifying strains from the gut of Epinephelus akaara cultivated in aquaculture facilities on Jeju Island. The aim was to evaluate the potential of utilizing these strains as probiotics for industrial applications. A total of 129 strains were isolated from the gut of E. akaara and screened based on their ability to create a clear zone of 10 mm or more in a preliminary antimicrobial activity test. Twelve strains were selected for further analysis, including bile resistance, acid tolerance at different pH levels, antioxidant activity, antibiotic susceptibility, and biochemical characteristics using the API kit. Through these characteristic experiments, eight strains (G1, G3, G15, G21, B1, B2, B3, B5) were identified as having potential as probiotics. Among these, the B group strains (B1, B2, B3, B5) exhibited significantly higher activity compared to the G group strains (G1, G3, G15, G21). Based on the phylogenetic analysis of the 16S rRNA gene sequences of the selected microorganisms, the strains were named as follows: B1 strain as Lactobacillus paracasei B1, B2 strain as Lactococcus lactis B2, B3 strain as Lactobacillus plantarum B3, B5 strain as Lactococcus lactis subsp. hordniae B5, G1 strain as Bacillus licheniformis G1, G3 strain as Bacillus velezensis G3, G15 strain as Brevibacterium frigoritolerans G15, and G21 strain as Bacillus pumilus G21.

Effect of Fumonisin B1 on the Bacterial Virus Multiplication (세균 바이러스 증식에 대한 Fumonisin B1의 영향)

  • 이길수
    • Toxicological Research
    • /
    • v.12 no.1
    • /
    • pp.17-20
    • /
    • 1996
  • The effect of Fumonisin B1, a mycotoxin produced by Fusarium moniliforme on bacterial viruses P1 and Lambda, was investigated by the virus plaque assay. Fumonisin B1 inhibited the P1 viral multiplication in the concentration range from $100{\mu}g$/ml to $400{\mu}g$/ml. The inhibition was Fumonisin B1 concentration-dependent. Another bacterial virus Lambda multiplication was also inhibited by lower concentration of Fumonisin B1 ($10{\mu}g$/ml~$50{\mu}g$/ml). This inhibition was dependent on Fumonisin B1 and on virus-Fumonisin B1 reaction time. Sensitivity of bacteriophage Lambda to Fumonisin B1 was higher than that of P1 virus. Lambda vital DNA was treated in vitro with Fumonisin B1 at various concentration. Significant DNA fragmentation by Fumonisin 191 was observed in the agarose gel electrophoresis. Lambda viral DNA was partially digested even in the Fumonisin B1 $10{\mu}g$ and the level of its fragmentation was dependent on Fumonisin B1 amount up to $30{\mu}g$ per assay.

  • PDF

The κ-Fermat's Integer Factorization Algorithm (κ-페르마 소인수분해 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • It is very difficult problem to factorize composite number. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$(mode $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$). Fermat's algorithm that is base of congruence of squares finds $a^2-b^2=n$. This paper proposes the method to find $a^2-b^2=kn$, ($k=1,2,{\cdots}$). It is supposed $b_1$=0 or 5 to be surely, and b is a double number. First, the proposed method decides $k$ by getting kn that satisfies $b_1=0$ and $b_1=5$ about $n_2n_1$. Second, it decides $a_2a_1$ that satisfies $a^2-b^2=kn$. Third, it figures out ($a,b$) from $a^2-b^2=kn$ about $a_2a_1$ as deciding $\sqrt{kn}$ < $a$ < $\sqrt{(k+1)n}$ that is in $kn$ < $a^2$ < $(k+1)n$. The proposed algorithm is much more effective in comparison with the conventional Fermat algorithm.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.