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Abstract. In this paper we derive some optimal convex combination bounds related to
arithmetic mean. We find the greatest values α1 and α2 and the least values β1 and β2

such that the double inequalities

α1T (a, b) + (1− α1)H(a, b) < A(a, b) < β1T (a, b) + (1− β1)H(a, b)

and
α2T (a, b) + (1− α2)G(a, b) < A(a, b) < β2T (a, b) + (1− β2)G(a, b)

holds for all a, b > 0 with a ̸= b. Here T (a, b), H(a, b), A(a, b) and G(a, b) denote the

second Seiffert, harmonic, arithmetic and geometric means of two positive numbers a and

b, respectively.

1. Introduction

For a, b > 0 with a ̸= b, the first and second Seiffert means P (a, b) and T (a, b)
was introduced by Seiffert [1,2] as follows:

(1.1) P (a, b) =
a− b

4 arctan(
√
a/b)− π

=
a− b

2 arcsin a−b
a+b

, T (a, b) =
a− b

2 arctan a−b
a+b

.

Recently, both means P and T have been the subject of intensive research. In
particular, many remarkable inequalities for P and T can be found in the literature
[2-6].

Let A(a, b) = (a + b)/2, G(a, b) =
√
ab and H(a, b) = 2ab/(a + b) be the

arithmetic, geometric and harmonic means of two positive real numbers a and b
with a ̸= b. Then

(1.2) min{a, b} < H(a, b) < G(a, b) < P (a, b) < A(a, b) < T (a, b) < max{a, b}.
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In [7], Seiffert proved

P (a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
and P (a, b) >

2

π
A(a, b),

for all a, b > 0 with a ̸= b.
In [8], the authors found the greatest value α and the least value β such that

the double inequality

αA(a, b) + (1− α)H(a, b) < P (a, b) < βA(a, b) + (1− β)H(a, b)

holds for all a, b > 0 with a ̸= b.
For other useful inequalities, see [9-20].
The purpose of the present paper is to find the greatest values α1 and α2 and

the least values β1 and β2 such that the double inequalities

α1T (a, b) + (1− α1)H(a, b) < A(a, b) < β1T (a, b) + (1− β1)H(a, b)

and

α2T (a, b) + (1− α2)G(a, b) < A(a, b) < β2T (a, b) + (1− β2)G(a, b)

holds for all a, b > 0 with a ̸= b.

2. Main Results

The first result in this paper is an optimal convex combination bounds of the
second Seiffert and harmonic means for arithmetic mean.

Theorem 2.1. The double inequality α1T (a, b) + (1 − α1)H(a, b) < A(a, b) <
β1T (a, b) + (1 − β1)H(a, b) holds for all a, b > 0 with a ̸= b if and only if α1 6 3

4
and β1 > π

4 .

Proof. Firstly, we prove that

(2.1) A(a, b) <
π

4
T (a, b) +

(
1− π

4

)
H(a, b),

(2.2) A(a, b) >
3

4
T (a, b) +

1

4
H(a, b),

for all a, b > 0 with a ̸= b.
Without loss of generality, we assume a > b. Let t = a/b > 1 and p ∈ { 3

4 ,
π
4 }.

Then (1.1) leads to

(2.3)

1

b
{A(a, b)− [pT (a, b) + (1− p)H(a, b)]}

= A(t, 1)− [pT (t, 1) + (1− p)H(t, 1)]

=
t2 + 2(2p− 1)t+ 1

2(t+ 1) arctan t−1
t+1

f(t),
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where

(2.4) f(t) = arctan
t− 1

t+ 1
− p(t2 − 1)

t2 + 2(2p− 1)t+ 1
.

Simple computations lead to

(2.5) lim
t→1+

f(t) = 0, lim
t→+∞

f(t) =
π

4
− p.

(2.6)

f ′(t)

= (−4p2+2p+1)t4+4(p−1)t3+2(4p2−6p+3)t2+4(p−1)t+(−4p2+2p+1)
(1+t2)[t2+2(2p−1)t+1]2

=
(t− 1)2g(t)

(1 + t2)[t2 + 2(2p− 1)t+ 1]2
,

where

(2.7) g(t) = (−4p2 + 2p+ 1)t2 − 2(4p2 − 4p+ 1)t+ (−4p2 + 2p+ 1).

Now we distinguish between two cases:
case 1 p = 3

4 . In this case,

(2.8) g(t) =
1

4
(t2 − 2t+ 1) =

1

4
(t− 1)2 > 0, for t > 1.

Therefore, inequality (2.2) follows from (2.3)-(2.7). Notice that in this case, the
second equality in (2.5) becomes

lim
t→+∞

f(t) =
π

4
− 3

4
> 0.

case 2 p = π
4 . From (2.7) we have

(2.9) lim
t→1+

g(t) = 4p(3− 4p) = π(3− π) < 0, lim
t→+∞

g(t) = +∞,

(2.10) g′(t) = 2(−4p2 + 2p+ 1)t− 2(4p2 − 4p+ 1),

(2.11) lim
t→1+

g′(t) = π(3− π) < 0, lim
t→+∞

g′(t) = +∞,

(2.12) g′′(t) = 2(−4p2 + 2p+ 1) =
1

2
(−π2 + 2π + 4) > 0,
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From (2.12) we clearly see that g′(t) is increasing for t > 1, which together
with (2.11) implies that there exists λ1 > 1 such that g′(t) < 0 for t ∈ (1, λ1) and
g′(t) > 0 for t ∈ (λ1,+∞). Hence g(t) is strictly decreasing for t ∈ (1, λ1) and
strictly increasing for t ∈ (λ1,+∞). (2.9) implies that there exists λ2 > 1 such that
g(t) < 0 for t ∈ (1, λ2) and g(t) > 0 for t ∈ (λ2,+∞). This result together with
(2.6) implies that f(t) is strictly decreasing for t ∈ (1, λ2) and strictly increasing
for t ∈ (λ2,+∞). Notice that if p = π/4, then the second equality in (2.5) becomes

lim
t→+∞

f(t) = 0.

Thus f(t) < 0 for all t > 1. Inequality (2.1) follows.
Secondly, we prove that 3

4T (a, b) +
1
4H(a, b) is the best possible lower convex

combination bound of the second Seiffert and harmonic means for arithmetic mean.
If α1 >

3
4 , then (2.7) (with α1 in place of p) leads to

lim
t→1+

g(t) = 4α1(3− 4α1) < 0.

From this result and the continuity of g(t) we clearly see that there exists δ =
δ(α1) > 0 such that g(t) < 0 for t ∈ (1, 1 + δ). Then (2.6) implies f ′(t) < 0 for
t ∈ (1, 1 + δ). Thus f(t) is decreasing for t ∈ (1, 1 + δ). Since (2.5), then f(t) < 0
for t ∈ (1, 1 + δ), which is equivalent to, by (2.3), that

A(t, 1) < α1T (t, 1) + (1− α1)H(t, 1),

for t ∈ (1, 1 + δ).
Finally, we prove that π

4T (a, b)+(1− π
4 )H(a, b) is the best possible upper convex

combination bound of the second Seiffert and harmonic means for arithmetic mean.
If β1 <

π
4 , then from (1.1) one has

(2.13)

lim
t→+∞

β1T (t, 1) + (1− β1)H(t, 1)

A(t, 1)

= lim
t→+∞

β1(t
2 − 1) + 4(1− β1)t arctan

t−1
t+1

(t+ 1)2 arctan t−1
t+1

=
4β1
π

< 1.

Inequality (2.13) implies that for any β1 <
π
4 there exists X = X(β1) > 1 such that

β1T (t, 1) + (1− β1)H(t, 1) < A(t, 1)

for t ∈ (X,+∞). 2

The second result in this paper is an optimal convex combination bounds of the
second Seiffert and geometric means for arithmetic Mean.

Theorem 2.2. The double inequality α2T (a, b) + (1 − α2)G(a, b) < A(a, b) <
β2T (a, b) + (1 − β2)G(a, b) holds for all a, b > 0 with a ̸= b if and only if α2 6 3

5
and β2 > π

4 .
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Proof. Firstly, we prove that

(2.14) A(a, b) <
π

4
T (a, b) +

(
1− π

4

)
G(a, b)

(2.15) A(a, b) >
3

5
T (a, b) +

2

5
G(a, b)

for all a, b > 0 with a ̸= b.
Without loss of generality, we assume a > b. Let t =

√
a/b > 1 and p ∈ { 3

5 ,
π
4 }.

Then (1.1) leads to

(2.16)

1

b
{A(a, b)− [pT (a, b) + (1− p)G(a, b)]}

= A(t2, 1)− [pT (t2, 1) + (1− p)G(t2, 1)]

=
t2 + 2(p− 1)t+ 1

2 arctan t2−1
t2+1

f(t),

where

(2.17) f(t) = arctan
t2 − 1

t2 + 1
− p(t2 − 1)

t2 + 2(p− 1)t+ 1
.

Simple computations lead to

(2.18) lim
t→1+

f(t) = 0, lim
t→+∞

f(t) =
π

4
− p,

(2.19) f ′(t) =
h(t)

(1 + t4)[t2 + 2(p− 1)t+ 1]2
=

(t− 1)2g(t)

(1 + t4)[t2 + 2(p− 1)t+ 1]2
,

where

h(t) = 2p(−p+ 1)t6 + 2(−2p+ 1)t5 + 2(−p2 + 5p− 4)t4 + 4(2p2 − 4p+ 3)t3

+2(−p2 + 5p− 4)t2 + 2(−2p+ 1)t+ 2p(−p+ 1)

and
(2.20)
g(t) = 2p(−p+1)t4+2(−2p2+1)t3+4(−2p2+2p−1)t2+2(−2p2+1)t+2p(−p+1).

It is easy to see that

(2.21) lim
t→1+

g(t) = 4p(3− 5p), lim
t→+∞

g(t) = +∞,

(2.22) g′(t) = 8p(1− p)t3 + 6(−2p2 + 1)t2 + 8(−2p2 + 2p− 1)t+ 2(−2p2 + 1),
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(2.23) lim
t→1+

g′(t) = 8p(3− 5p), lim
t→+∞

g(t) = +∞,

(2.24) g′′(t) = 24p(1− p)t2 + 12(−2p2 + 1)t+ 8(−2p2 + 2p− 1),

(2.25) lim
t→1+

g′′(t) = 4(−16p2 + 10p+ 1), lim
t→+∞

g′′(t) = +∞,

(2.26) g′′′(t) = 48p(1− p)t+ 12(−2p2 + 1).

Now we distinguish between two cases.
case 1 p = 3

5 . It follows from (2.21), (2.23), (2.25) and (2.26) that

(2.27) lim
t→1+

g(t) = 0, lim
t→+∞

g(t) = +∞,

(2.28) lim
t→1+

g′(t) = 0, lim
t→+∞

g′(t) = +∞,

(2.29) lim
t→1+

g′′(t) =
124

25
> 0, lim

t→+∞
g′′(t) = +∞,

(2.30) g′′′(t) =
12

25
(24t+ 7) > 0,

From (2.30) we clearly see that g′′(t) is strictly increasing for t > 1, which
together with (2.29) implies that g′′(t) > 0 for all t > 1. Thus g′(t) is strictly
increasing for t > 1. From (2.28) we get g′(t) > 0 for all t > 1. Therefore g(t) is
strictly increasing for t > 1. (2.27) implies that g(t) > 0 for all t > 1. Thus from
(2.19) we clearly see that f ′(t) > 0 for t > 1, from which one has f(t) is strictly
increasing for t > 1. Notice that the second equality in (2.18) becomes

lim
t→+∞

f(t) =
π

4
− 3

5
> 0.

Hence f(t) > 0 and (2.15) follows from (2.18) and (2.16).
case 2 p = π

4 . From (2.21), (2.23), (2.25) and (2.26) we have

(2.31) lim
t→1+

g(t) = π(3− 5π/4) < 0, lim
t→+∞

g(t) = +∞,
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(2.32) lim
t→1+

g′(t) = 2π(3− 5π/4) < 0, lim
t→+∞

g′(t) = +∞,

(2.33) lim
t→1+

g′′(t) = 4(−π2 +
5π

2
+ 1) < 0, lim

t→+∞
g′′(t) = +∞,

(2.34) lim
t→1+

g′′′(t) = −9π2

8
+

7π

4
+ 3 > 0, lim

t→+∞
g′′′(t) = +∞,

Since

(2.35) g(4)(t) = 3π(4− π) > 0,

then we clearly see that g′′′(t) is strictly increasing for t > 1, which together with
(2.34) implies that g′′′(t) > 0 for t > 1. Thus g′′(t) is strictly increasing for t > 1.
From (2.33), we derive that there exists λ3 > 1 such that g′′(t) < 0 for t ∈ (1, λ3)
and g′′(t) > 0 for t ∈ (λ3,+∞). Hence g′(t) is strictly decreasing for t ∈ (1, λ3)
and strictly increasing for t ∈ (λ3,+∞). From (2.32), there exists λ4 > 1 such
that g′(t) < 0 for t ∈ (1, λ4) and g′(t) > 0 for t ∈ (λ4,+∞). Thus g(t) is strictly
decreasing for t ∈ (1, λ4) and strictly increasing for t ∈ (λ4,+∞). (2.31) implies that
there exists λ5 > 1 such that g(t) < 0 for t ∈ (1, λ5) and g(t) > 0 for t ∈ (λ5,+∞).
(2.19) implies that f(t) is strictly decreasing for t ∈ (1, λ5) and strictly increasing
for t ∈ (λ5,+∞). Notice that in this case, the second equality in (2.18) becomes

lim
t→+∞

f(t) = 0.

Thus f(t) < 0 for all t > 1, and (2.14) follows.
Secondly, we prove that 3

5T (a, b) +
2
5G(a, b) is the best possible lower convex

combination bound of the second Seiffert and geometric means for arithmetic mean.
If α2 >

3
5 , then (2.21) (with α2 in place of p) leads to

(2.36) lim
t→1+

g(t) = 4α2(3− 5α2) < 0.

From (2.36) and the continuity of g(t) we see that there exists δ = δ(α2) > 0 such
that

(2.37) g(t) < 0

for t ∈ (1, 1 + δ). Then (2.19) and the first equality of (2.18) imply that

(2.38) f(t) < 0

for t ∈ (1, 1 + δ). Therefore, by (2.16), A(t2, 1) < α2T (t
2, 1) + (1 − α2)G(t

2, 1) for
t ∈ (1, 1 + δ).
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Finally, we prove that π
4T (a, b)+(1− π

4 )G(a, b) is the best possible upper convex
combination bound of the second Seiffert and geometric means for arithmetic mean.

If β2 <
π
4 , then from (1.1) one has

(2.39)

lim
t→+∞

β2T (t, 1) + (1− β2)G(t, 1)

A(t, 1)

= lim
t→+∞

β2(t− 1) + 2(1− β2)
√
t arctan t−1

t+1

(t+ 1) arctan t−1
t+1

=
4β2
π

< 1.

Inequality (2.39) implies that for any β2 <
π
4 there exists X = X(β2) > 1 such that

β2T (t, 1) + (1− β2)G(t, 1) < A(t, 1)

for t ∈ (X,+∞). 2
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