Some Optimal Convex Combination Bounds for Arithmetic Mean

Gao Hongya* and Xue Ruihong
College of Mathematics and Computer Science, Hebei University, Baoding, 071002, P. R. China
e-mail: ghy@hbu.cn and xueruihong100@163.com

Abstract. In this paper we derive some optimal convex combination bounds related to arithmetic mean. We find the greatest values α_{1} and α_{2} and the least values β_{1} and β_{2} such that the double inequalities

$$
\alpha_{1} T(a, b)+\left(1-\alpha_{1}\right) H(a, b)<A(a, b)<\beta_{1} T(a, b)+\left(1-\beta_{1}\right) H(a, b)
$$

and

$$
\alpha_{2} T(a, b)+\left(1-\alpha_{2}\right) G(a, b)<A(a, b)<\beta_{2} T(a, b)+\left(1-\beta_{2}\right) G(a, b)
$$

holds for all $a, b>0$ with $a \neq b$. Here $T(a, b), H(a, b), A(a, b)$ and $G(a, b)$ denote the second Seiffert, harmonic, arithmetic and geometric means of two positive numbers a and b, respectively.

1. Introduction

For $a, b>0$ with $a \neq b$, the first and second Seiffert means $P(a, b)$ and $T(a, b)$ was introduced by Seiffert $[1,2]$ as follows:

$$
\begin{equation*}
P(a, b)=\frac{a-b}{4 \arctan (\sqrt{a / b})-\pi}=\frac{a-b}{2 \arcsin \frac{a-b}{a+b}}, \quad T(a, b)=\frac{a-b}{2 \arctan \frac{a-b}{a+b}} . \tag{1.1}
\end{equation*}
$$

Recently, both means P and T have been the subject of intensive research. In particular, many remarkable inequalities for P and T can be found in the literature [2-6].

Let $A(a, b)=(a+b) / 2, G(a, b)=\sqrt{a b}$ and $H(a, b)=2 a b /(a+b)$ be the arithmetic, geometric and harmonic means of two positive real numbers a and b with $a \neq b$. Then

$$
\begin{equation*}
\min \{a, b\}<H(a, b)<G(a, b)<P(a, b)<A(a, b)<T(a, b)<\max \{a, b\} \tag{1.2}
\end{equation*}
$$

* Corresponding Author.

Received June 9, 2011; accepted April 29, 2013.
2010 Mathematics Subject Classification: 26D15.
Key words and phrases: Optimal convex combination bound, arithmetic mean, harmonic mean, geometric mean, the second Seiffert mean.
This work was supported by NSF of Hebei Province (Grant No. A2011201011).

In [7], Seiffert proved

$$
P(a, b)>\frac{3 A(a, b) G(a, b)}{A(a, b)+2 G(a, b)} \text { and } P(a, b)>\frac{2}{\pi} A(a, b)
$$

for all $a, b>0$ with $a \neq b$.
In $[8]$, the authors found the greatest value α and the least value β such that the double inequality

$$
\alpha A(a, b)+(1-\alpha) H(a, b)<P(a, b)<\beta A(a, b)+(1-\beta) H(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.
For other useful inequalities, see [9-20].
The purpose of the present paper is to find the greatest values α_{1} and α_{2} and the least values β_{1} and β_{2} such that the double inequalities

$$
\alpha_{1} T(a, b)+\left(1-\alpha_{1}\right) H(a, b)<A(a, b)<\beta_{1} T(a, b)+\left(1-\beta_{1}\right) H(a, b)
$$

and

$$
\alpha_{2} T(a, b)+\left(1-\alpha_{2}\right) G(a, b)<A(a, b)<\beta_{2} T(a, b)+\left(1-\beta_{2}\right) G(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.

2. Main Results

The first result in this paper is an optimal convex combination bounds of the second Seiffert and harmonic means for arithmetic mean.
Theorem 2.1. The double inequality $\alpha_{1} T(a, b)+\left(1-\alpha_{1}\right) H(a, b)<A(a, b)<$ $\beta_{1} T(a, b)+\left(1-\beta_{1}\right) H(a, b)$ holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leqslant \frac{3}{4}$ and $\beta_{1} \geqslant \frac{\pi}{4}$.
Proof. Firstly, we prove that

$$
\begin{gather*}
A(a, b)<\frac{\pi}{4} T(a, b)+\left(1-\frac{\pi}{4}\right) H(a, b), \tag{2.1}\\
A(a, b)>\frac{3}{4} T(a, b)+\frac{1}{4} H(a, b) \tag{2.2}
\end{gather*}
$$

for all $a, b>0$ with $a \neq b$.
Without loss of generality, we assume $a>b$. Let $t=a / b>1$ and $p \in\left\{\frac{3}{4}, \frac{\pi}{4}\right\}$. Then (1.1) leads to

$$
\begin{align*}
& \frac{1}{b}\{A(a, b)-[p T(a, b)+(1-p) H(a, b)]\} \\
= & A(t, 1)-[p T(t, 1)+(1-p) H(t, 1)] \tag{2.3}\\
= & \frac{t^{2}+2(2 p-1) t+1}{2(t+1) \arctan \frac{t-1}{t+1}} f(t),
\end{align*}
$$

where

$$
\begin{equation*}
f(t)=\arctan \frac{t-1}{t+1}-\frac{p\left(t^{2}-1\right)}{t^{2}+2(2 p-1) t+1} . \tag{2.4}
\end{equation*}
$$

Simple computations lead to

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} f(t)=0, \quad \lim _{t \rightarrow+\infty} f(t)=\frac{\pi}{4}-p \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{\left(-4 p^{2}+2 p+1\right) t^{4}+4(p-1) t^{3}+2\left(4 p^{2}-6 p+3\right) t^{2}+4(p-1) t+\left(-4 p^{2}+2 p+1\right)}{\left(1+t^{2}\right)\left[t^{2}+2(2 p-1) t+1\right]^{2}} \tag{2.6}\\
& =\frac{(t-1)^{2} g(t)}{\left(1+t^{2}\right)\left[t^{2}+2(2 p-1) t+1\right]^{2}},
\end{align*}
$$

where

$$
\begin{equation*}
g(t)=\left(-4 p^{2}+2 p+1\right) t^{2}-2\left(4 p^{2}-4 p+1\right) t+\left(-4 p^{2}+2 p+1\right) \tag{2.7}
\end{equation*}
$$

Now we distinguish between two cases:
case $1 p=\frac{3}{4}$. In this case,

$$
\begin{equation*}
g(t)=\frac{1}{4}\left(t^{2}-2 t+1\right)=\frac{1}{4}(t-1)^{2}>0, \text { for } t>1 . \tag{2.8}
\end{equation*}
$$

Therefore, inequality (2.2) follows from (2.3)-(2.7). Notice that in this case, the second equality in (2.5) becomes

$$
\lim _{t \rightarrow+\infty} f(t)=\frac{\pi}{4}-\frac{3}{4}>0 .
$$

case $2 p=\frac{\pi}{4}$. From (2.7) we have

$$
\begin{equation*}
g^{\prime}(t)=2\left(-4 p^{2}+2 p+1\right) t-2\left(4 p^{2}-4 p+1\right) \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g(t)=4 p(3-4 p)=\pi(3-\pi)<0, \quad \lim _{t \rightarrow+\infty} g(t)=+\infty, \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
\lim _{t \rightarrow 1^{+}} g^{\prime}(t)=\pi(3-\pi)<0, \quad \lim _{t \rightarrow+\infty} g^{\prime}(t)=+\infty \tag{2.11}\\
g^{\prime \prime}(t)=2\left(-4 p^{2}+2 p+1\right)=\frac{1}{2}\left(-\pi^{2}+2 \pi+4\right)>0, \tag{2.12}
\end{gather*}
$$

From (2.12) we clearly see that $g^{\prime}(t)$ is increasing for $t>1$, which together with (2.11) implies that there exists $\lambda_{1}>1$ such that $g^{\prime}(t)<0$ for $t \in\left(1, \lambda_{1}\right)$ and $g^{\prime}(t)>0$ for $t \in\left(\lambda_{1},+\infty\right)$. Hence $g(t)$ is strictly decreasing for $t \in\left(1, \lambda_{1}\right)$ and strictly increasing for $t \in\left(\lambda_{1},+\infty\right)$. (2.9) implies that there exists $\lambda_{2}>1$ such that $g(t)<0$ for $t \in\left(1, \lambda_{2}\right)$ and $g(t)>0$ for $t \in\left(\lambda_{2},+\infty\right)$. This result together with (2.6) implies that $f(t)$ is strictly decreasing for $t \in\left(1, \lambda_{2}\right)$ and strictly increasing for $t \in\left(\lambda_{2},+\infty\right)$. Notice that if $p=\pi / 4$, then the second equality in (2.5) becomes

$$
\lim _{t \rightarrow+\infty} f(t)=0
$$

Thus $f(t)<0$ for all $t>1$. Inequality (2.1) follows.
Secondly, we prove that $\frac{3}{4} T(a, b)+\frac{1}{4} H(a, b)$ is the best possible lower convex combination bound of the second Seiffert and harmonic means for arithmetic mean.

If $\alpha_{1}>\frac{3}{4}$, then (2.7) (with α_{1} in place of p) leads to

$$
\lim _{t \rightarrow 1^{+}} g(t)=4 \alpha_{1}\left(3-4 \alpha_{1}\right)<0
$$

From this result and the continuity of $g(t)$ we clearly see that there exists $\delta=$ $\delta\left(\alpha_{1}\right)>0$ such that $g(t)<0$ for $t \in(1,1+\delta)$. Then (2.6) implies $f^{\prime}(t)<0$ for $t \in(1,1+\delta)$. Thus $f(t)$ is decreasing for $t \in(1,1+\delta)$. Since (2.5), then $f(t)<0$ for $t \in(1,1+\delta)$, which is equivalent to, by (2.3), that

$$
A(t, 1)<\alpha_{1} T(t, 1)+\left(1-\alpha_{1}\right) H(t, 1)
$$

for $t \in(1,1+\delta)$.
Finally, we prove that $\frac{\pi}{4} T(a, b)+\left(1-\frac{\pi}{4}\right) H(a, b)$ is the best possible upper convex combination bound of the second Seiffert and harmonic means for arithmetic mean.

If $\beta_{1}<\frac{\pi}{4}$, then from (1.1) one has

$$
\begin{align*}
& \lim _{t \rightarrow+\infty} \frac{\beta_{1} T(t, 1)+\left(1-\beta_{1}\right) H(t, 1)}{A(t, 1)} \\
= & \lim _{t \rightarrow+\infty} \frac{\beta_{1}\left(t^{2}-1\right)+4\left(1-\beta_{1}\right) t \arctan \frac{t-1}{t+1}}{(t+1)^{2} \arctan \frac{t-1}{t+1}}=\frac{4 \beta_{1}}{\pi}<1 . \tag{2.13}
\end{align*}
$$

Inequality (2.13) implies that for any $\beta_{1}<\frac{\pi}{4}$ there exists $X=X\left(\beta_{1}\right)>1$ such that

$$
\beta_{1} T(t, 1)+\left(1-\beta_{1}\right) H(t, 1)<A(t, 1)
$$

for $t \in(X,+\infty)$.
The second result in this paper is an optimal convex combination bounds of the second Seiffert and geometric means for arithmetic Mean.

Theorem 2.2. The double inequality $\alpha_{2} T(a, b)+\left(1-\alpha_{2}\right) G(a, b)<A(a, b)<$ $\beta_{2} T(a, b)+\left(1-\beta_{2}\right) G(a, b)$ holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{2} \leqslant \frac{3}{5}$ and $\beta_{2} \geqslant \frac{\pi}{4}$.

Proof. Firstly, we prove that

$$
\begin{gather*}
A(a, b)<\frac{\pi}{4} T(a, b)+\left(1-\frac{\pi}{4}\right) G(a, b) \tag{2.14}\\
A(a, b)>\frac{3}{5} T(a, b)+\frac{2}{5} G(a, b) \tag{2.15}
\end{gather*}
$$

for all $a, b>0$ with $a \neq b$.
Without loss of generality, we assume $a>b$. Let $t=\sqrt{a / b}>1$ and $p \in\left\{\frac{3}{5}, \frac{\pi}{4}\right\}$. Then (1.1) leads to

$$
\begin{align*}
& \frac{1}{b}\{A(a, b)-[p T(a, b)+(1-p) G(a, b)]\} \\
= & A\left(t^{2}, 1\right)-\left[p T\left(t^{2}, 1\right)+(1-p) G\left(t^{2}, 1\right)\right] \tag{2.16}\\
= & \frac{t^{2}+2(p-1) t+1}{2 \arctan \frac{t^{2}-1}{t^{2}+1}} f(t),
\end{align*}
$$

where

$$
\begin{equation*}
f(t)=\arctan \frac{t^{2}-1}{t^{2}+1}-\frac{p\left(t^{2}-1\right)}{t^{2}+2(p-1) t+1} \tag{2.17}
\end{equation*}
$$

Simple computations lead to

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} f(t)=0, \quad \lim _{t \rightarrow+\infty} f(t)=\frac{\pi}{4}-p \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}(t)=\frac{h(t)}{\left(1+t^{4}\right)\left[t^{2}+2(p-1) t+1\right]^{2}}=\frac{(t-1)^{2} g(t)}{\left(1+t^{4}\right)\left[t^{2}+2(p-1) t+1\right]^{2}} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
h(t)= & 2 p(-p+1) t^{6}+2(-2 p+1) t^{5}+2\left(-p^{2}+5 p-4\right) t^{4}+4\left(2 p^{2}-4 p+3\right) t^{3} \\
& +2\left(-p^{2}+5 p-4\right) t^{2}+2(-2 p+1) t+2 p(-p+1)
\end{aligned}
$$

and
(2.20)
$g(t)=2 p(-p+1) t^{4}+2\left(-2 p^{2}+1\right) t^{3}+4\left(-2 p^{2}+2 p-1\right) t^{2}+2\left(-2 p^{2}+1\right) t+2 p(-p+1)$.
It is easy to see that

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g(t)=4 p(3-5 p), \lim _{t \rightarrow+\infty} g(t)=+\infty \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
g^{\prime}(t)=8 p(1-p) t^{3}+6\left(-2 p^{2}+1\right) t^{2}+8\left(-2 p^{2}+2 p-1\right) t+2\left(-2 p^{2}+1\right) \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
g^{\prime \prime \prime}(t)=48 p(1-p) t+12\left(-2 p^{2}+1\right) \tag{2.26}
\end{equation*}
$$

Now we distinguish between two cases.
case $1 p=\frac{3}{5}$. It follows from $(2.21),(2.23),(2.25)$ and (2.26) that

$$
\begin{gather*}
\lim _{t \rightarrow 1^{+}} g(t)=0, \quad \lim _{t \rightarrow+\infty} g(t)=+\infty \tag{2.27}\\
\lim _{t \rightarrow 1^{+}} g^{\prime}(t)=0, \quad \lim _{t \rightarrow+\infty} g^{\prime}(t)=+\infty \tag{2.28}\\
\lim _{t \rightarrow 1^{+}} g^{\prime \prime}(t)=\frac{124}{25}>0, \quad \lim _{t \rightarrow+\infty} g^{\prime \prime}(t)=+\infty \tag{2.29}\\
g^{\prime \prime \prime}(t)=\frac{12}{25}(24 t+7)>0 \tag{2.30}
\end{gather*}
$$

From (2.30) we clearly see that $g^{\prime \prime}(t)$ is strictly increasing for $t>1$, which together with (2.29) implies that $g^{\prime \prime}(t)>0$ for all $t>1$. Thus $g^{\prime}(t)$ is strictly increasing for $t>1$. From (2.28) we get $g^{\prime}(t)>0$ for all $t>1$. Therefore $g(t)$ is strictly increasing for $t>1$. (2.27) implies that $g(t)>0$ for all $t>1$. Thus from (2.19) we clearly see that $f^{\prime}(t)>0$ for $t>1$, from which one has $f(t)$ is strictly increasing for $t>1$. Notice that the second equality in (2.18) becomes

$$
\lim _{t \rightarrow+\infty} f(t)=\frac{\pi}{4}-\frac{3}{5}>0
$$

Hence $f(t)>0$ and (2.15) follows from (2.18) and (2.16). case $2 p=\frac{\pi}{4}$. From (2.21), (2.23), (2.25) and (2.26) we have

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g(t)=\pi(3-5 \pi / 4)<0, \quad \lim _{t \rightarrow+\infty} g(t)=+\infty \tag{2.31}
\end{equation*}
$$

$$
\begin{align*}
& \lim _{t \rightarrow 1^{+}} g^{\prime}(t)=2 \pi(3-5 \pi / 4)<0, \quad \lim _{t \rightarrow+\infty} g^{\prime}(t)=+\infty \tag{2.32}\\
& \lim _{t \rightarrow 1^{+}} g^{\prime \prime}(t)=4\left(-\pi^{2}+\frac{5 \pi}{2}+1\right)<0, \quad \lim _{t \rightarrow+\infty} g^{\prime \prime}(t)=+\infty \tag{2.33}\\
& \lim _{t \rightarrow 1^{+}} g^{\prime \prime \prime}(t)=-\frac{9 \pi^{2}}{8}+\frac{7 \pi}{4}+3>0, \quad \lim _{t \rightarrow+\infty} g^{\prime \prime \prime}(t)=+\infty \tag{2.34}
\end{align*}
$$

Since

$$
\begin{equation*}
g^{(4)}(t)=3 \pi(4-\pi)>0 \tag{2.35}
\end{equation*}
$$

then we clearly see that $g^{\prime \prime \prime}(t)$ is strictly increasing for $t>1$, which together with (2.34) implies that $g^{\prime \prime \prime}(t)>0$ for $t>1$. Thus $g^{\prime \prime}(t)$ is strictly increasing for $t>1$. From (2.33), we derive that there exists $\lambda_{3}>1$ such that $g^{\prime \prime}(t)<0$ for $t \in\left(1, \lambda_{3}\right)$ and $g^{\prime \prime}(t)>0$ for $t \in\left(\lambda_{3},+\infty\right)$. Hence $g^{\prime}(t)$ is strictly decreasing for $t \in\left(1, \lambda_{3}\right)$ and strictly increasing for $t \in\left(\lambda_{3},+\infty\right)$. From (2.32), there exists $\lambda_{4}>1$ such that $g^{\prime}(t)<0$ for $t \in\left(1, \lambda_{4}\right)$ and $g^{\prime}(t)>0$ for $t \in\left(\lambda_{4},+\infty\right)$. Thus $g(t)$ is strictly decreasing for $t \in\left(1, \lambda_{4}\right)$ and strictly increasing for $t \in\left(\lambda_{4},+\infty\right)$. (2.31) implies that there exists $\lambda_{5}>1$ such that $g(t)<0$ for $t \in\left(1, \lambda_{5}\right)$ and $g(t)>0$ for $t \in\left(\lambda_{5},+\infty\right)$. (2.19) implies that $f(t)$ is strictly decreasing for $t \in\left(1, \lambda_{5}\right)$ and strictly increasing for $t \in\left(\lambda_{5},+\infty\right)$. Notice that in this case, the second equality in (2.18) becomes

$$
\lim _{t \rightarrow+\infty} f(t)=0
$$

Thus $f(t)<0$ for all $t>1$, and (2.14) follows.
Secondly, we prove that $\frac{3}{5} T(a, b)+\frac{2}{5} G(a, b)$ is the best possible lower convex combination bound of the second Seiffert and geometric means for arithmetic mean.

If $\alpha_{2}>\frac{3}{5}$, then (2.21) (with α_{2} in place of p) leads to

$$
\begin{equation*}
\lim _{t \rightarrow 1^{+}} g(t)=4 \alpha_{2}\left(3-5 \alpha_{2}\right)<0 \tag{2.36}
\end{equation*}
$$

From (2.36) and the continuity of $g(t)$ we see that there exists $\delta=\delta\left(\alpha_{2}\right)>0$ such that

$$
\begin{equation*}
g(t)<0 \tag{2.37}
\end{equation*}
$$

for $t \in(1,1+\delta)$. Then (2.19) and the first equality of (2.18) imply that

$$
\begin{equation*}
f(t)<0 \tag{2.38}
\end{equation*}
$$

for $t \in(1,1+\delta)$. Therefore, by $(2.16), A\left(t^{2}, 1\right)<\alpha_{2} T\left(t^{2}, 1\right)+\left(1-\alpha_{2}\right) G\left(t^{2}, 1\right)$ for $t \in(1,1+\delta)$.

Finally, we prove that $\frac{\pi}{4} T(a, b)+\left(1-\frac{\pi}{4}\right) G(a, b)$ is the best possible upper convex combination bound of the second Seiffert and geometric means for arithmetic mean.

If $\beta_{2}<\frac{\pi}{4}$, then from (1.1) one has

$$
\begin{align*}
& \lim _{t \rightarrow+\infty} \frac{\beta_{2} T(t, 1)+\left(1-\beta_{2}\right) G(t, 1)}{A(t, 1)} \\
= & \lim _{t \rightarrow+\infty} \frac{\beta_{2}(t-1)+2\left(1-\beta_{2}\right) \sqrt{t} \arctan \frac{t-1}{t+1}}{(t+1) \arctan \frac{t-1}{t+1}}=\frac{4 \beta_{2}}{\pi}<1 . \tag{2.39}
\end{align*}
$$

Inequality (2.39) implies that for any $\beta_{2}<\frac{\pi}{4}$ there exists $X=X\left(\beta_{2}\right)>1$ such that

$$
\beta_{2} T(t, 1)+\left(1-\beta_{2}\right) G(t, 1)<A(t, 1)
$$

for $t \in(X,+\infty)$.

References

[1] H. J. Seiffert, Problem 887, Nieuw Archief voor Wiskunde, 11(1993), 176-176.
[2] H. J. Seiffert, Aufgabe $\beta 16$, Die Wurzel, 29(1995), 221-222.
[3] P. A. Hästö, Optimal inequalities between Seiffert's mean and power mean, Mathematical Inequalities and Applications, 7 (2004), 47-53.
[4] E. Neuman and J. Sändor, On certain means of two arguments and their extensions, International Journal of Mathematics and Mathematical Sciences, 16(2003), 981-993.
[5] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica, 14(2003), 253-266.
[6] P. A. Hästö, A monotonicity property of ratios of symmetric homogeneous means, Journal of Inequalities in Pure and Applied Mathematics, 3(2002), 1-54.
[7] H. J. Seiffert, Ungleichungen für einen bestimmten mittelwert, Nieuw Archief voor Wiskunde, 13(1995), 195-198.
[8] Y. M. Chu, Y. F. Qiu, M. K. Wang and G. D. Wang, The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert's mean, Journal of Inequalities and Applications, Article ID 436457, dio: 10.1155/436457, 7 pages, 2010.
[9] M. K. Wang, Y. M. Chu and Y. F. Qiu, Some comparison inequalities for generalized Muirhead and identric means, Journal of Inequalities and Applications, 2010, Article ID 295620,10 pages, 2010.
[10] B. Y. Long and Y. M. Chu, Optimal inequalities for generalized logarithmic, arithmetic and geometric means, Journal of Inequalities and Applications, 2010, Article ID 806825, 10 pages, 2010.
[11] B. Y. Long and Y. M. Chu, Optimal power mean bounds for the weighted geometric mean of classical means, Journal of Inequalities and Applications, 2010, Article ID 905679, 6 pages, 2010.
[12] W. F. Xia, Y. M. Chu and G. D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstract and Applied Analysis, 2010, Article ID604804, 9 pages, 2010.
[13] Y. M. Chu and B. Y. Long, Best possible inequalities between generalized logarithmic mean and classical means, Abstract and Applied Analysis, 2010, Article ID 303286, 13 pages, 2010.
[14] M. Y. Shi, Y. M. Chu and Y. P. Jiang, Optimal inequalities among various means of two arguments, Abstract and Applied Analysis, 2009, Article ID 694394, 10 pages, 2009.
[15] Y. M. Chu and W. F. Xia, Two sharp inequalities for power mean, geometric mean and harmonic mean, Journal of Inequalities and Applications, 2009, Article ID 741923, 6 pages, 2009.
[16] Y. M. Chu and W. F. Xia, Inequalities for generalized logarithmic means, Journal of Inequalities and Applications, 2009, Article ID 763252, 7 pages, 2009.
[17] J. J. Wen and W. L. Wang, The optimization for the inequalities of power means, Journal of Inequalities and Applications, 2006, Article ID 46782, 25 pages, 2006.
[18] T. Hara, M. Uchiyama and S. E. Takahasi, A refinement of various mean inequalities, Journal of Inequalities and Applications, 2(1998), 387-395.
[19] E. Neuman and J. Sändor, On the Schwab-Borchardt mean, Mathematica Pannonica, 17(2006), 49-59.
[20] A. A. Jagers, Solution of problem 887, Nieuw Archief voor Wiskunde, 12(1994), 230231.

