• 제목/요약/키워드: BVOCs

검색결과 20건 처리시간 0.024초

소나무와 잣나무에서 배출되는 주요 테르펜의 배출특성에 관한 비교연구 (A Study on the Comparison to Source Profile of the Major Terpenes from Pine Tree and Korean Pine Tree)

  • 지동영;김소영;한진석
    • 한국대기환경학회지
    • /
    • 제18권6호
    • /
    • pp.515-525
    • /
    • 2002
  • A field study was conducted to estimate the emission rate of biogenic volatile organic compounds (BVOCs) from pine trees. In addition, the influences of meteological variables on their distribution characteristics have been investigated. A vegetation enclosure chamber was designed and constructed of Tedlar bag and acril. Sorbent tubes made up of Tenax TA and Carbotrap were used to collect biogenic VOCs emitted from each individual tree. Analysis of BVOCs was performed using a GC-FID system. The fundamental analytical parameters including linearity, retention time, recovery efficiency, and breakthrough volume were examined and verified for the determination of monoterpene emission rates. Total average concentration of each component is found to be $\alpha$-pinene (16.5), $\beta$-pinene (4.61) from pine trees, and $\alpha$-pinene (42.4), $\beta$-pinene (18.7 ng(gdw)$^{-1}$ hr$^{-1}$ ) from Korean pine trees. On the basis of our study, $\alpha$-pinene was found to be the major monoterpene emitted from both pine and Korean pine trees which were accompanied by $\beta$-pinene, camphene, and limonene. In ambient air, variable monoterpene compositions of emissions from pine trees were similar to Korean pine trees. Emission rates of monoterpene from each tree were found to depend on such parameters as temperature and solar radiation.

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

국내 수종별 BVOCs 방출량(II): 도시 숲 주요 수종 (Emission Rates of Biogenic Volatile Organic Compounds from Various Tree Species in Korea (II): Major Species in Urban Forests)

  • 장한나;손정아;김주완;김준혁;김영성;최원실;이영규
    • 한국산림과학회지
    • /
    • 제111권4호
    • /
    • pp.490-501
    • /
    • 2022
  • 식물체에서 isoprene, monoterpene, sesquiterpene과 같은 화합물들 형태로 방출되는 피톤치드를 포함한 VOCs를 총칭하여 생물유래 휘발성유기화합물 BVOCs (biogenic volatile organic compounds)로 구분하고 있다. 피톤치드는 중요한 산림치유 인자인 동시에 질소화합물과 광학반응을 하여 오존 및 이차 유기에어로졸 생성에 영향을 미치는 물질로 보고되고 있다. 본 연구에서는 우리나라 도시숲 주요 32 수종을 선정하여 3년생 이하 묘목을 연구 대상으로 표준환경조건(온도: 30℃, 광도: 1,000 μmol/m2/sec)에서 400 L Tedlar bag을 순환형 챔버를 이용하여 도시숲 주요 수종에서 방출되는 기체시료를 포집하여 열탈착-GC/MS로 분석하였다. 해당 수종의 잎을 건조시켜 건중량 당 수종별 isoprene 및 terpene류 38종의 방출량을 분석하였다. Isoprene 방출량은 전체 수종 중에서 신갈나무에서 가장 높게 나타났으며 버드나무, 아까시나무, 왕버들이 주요 isoprene 방출 수종으로 분류되었다. Monoterpene 방출량은 스트로브잣나무가 가장 높았으며 참죽나무, 박태기나무가 주요 monoterpene 방출 수종으로 나타났다. Monoterpene 주요 물질은 α-pinene, myrcene, camphene, limonene이였으며, oxygenated monoterpene의 주요 물질은 eucalyptol이였다. Oxygenated sesquiterpene에서는 caryophyllene oxide가 주요 물질로 검출되었지만 32개 수종에서 sesquiterpene과 oxygenated sesquiterpene의 방출량은 상대적으로 낮았다.

Flux-gradient similarity theory 적용에 따른 태화산 산림지표 토양NO플럭스 분석 (Practical Use of Flux Gradient Similarity Theory for Forest Soil NO Flux at Mt. Taewha)

  • 김득수
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.531-537
    • /
    • 2014
  • Terrestrial vegetation has been known as a main source of biogenic volatile organic compounds (BVOCs). Isoprene and monoterpene among the BVOCs are most abundant species emitted by forests, and have a significant impact on atmospheric chemistry. Abundancy of these species could lead to an increase or decrease in the production of natural tropospheric ozone in forests, depending on the nitric oxide (NO) concentration. Soil is the most significant source of natural NO. Understanding of NO emission from forest soil could be critical in evaluation of air quality in the forest area. Flux-gradient similarity theory (FGST) was applied for practical use to estimate forest soil NO emission at Mt. Taewha where is available micro-meteorological data near surface monitoring from flux tower. NO fluxes calculated by FGST were compared to flux results by flow-through dynamic chamber (FDC) measurement. Surface NO emission trends were shown between two different techniques, however their magnitudes were found to be different. NO emissions measured from FDC technique were relatively higher than those from theoretical results. Daily mean NO emissions resulted from FGST during Aug. 13, 14 and 15 were $0.28{\pm}8.45$, $2.17{\pm}15.55$, and $-3.18{\pm}13.65{\mu}gm^{-2}hr^{-1}$, respectively, while results from FDC were $2.26{\pm}1.44$, $5.11{\pm}3.85$, and $2.23{\pm}6.45{\mu}gm^{-2}hr^{-1}$. Trends of daily means were shown in similar pattern, which NO emissions were increasing during late afternoon ($r^2$=0.04). These emission trends could be because soil temperature and moisture influence importantly soil microbiology.

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.

바람장 분석을 통한 도시숲 미세먼지 관측 장비 설치 지점 선정 (Selection of Particulate Matter Observation Measurement Sites in Urban Forest Using Wind Analysis)

  • 이아름;정수종;박찬열;박훈영;윤종민;손정훈;배연
    • 대기
    • /
    • 제29권5호
    • /
    • pp.689-698
    • /
    • 2019
  • Air pollution in urban areas has become a serious problem in the recent years. Especially, high concentrations of particulate matter (PM) cause negative effects on human health. Several studies suggest urban forest as a tool for improving air quality because of the capability of forests in reducing PM concentrations through deposition and adsorption using leaf area. For this reason, the National Institute of Forest Science plans to install in-situ observation stations for PM and biogenic volatile organic compounds (BVOCs) on a national scale to verify the net effect of forests on urban air pollution. To measure the quantitative change of PM concentrations due to the urban forest, stations should be located within and outside the forest area with respect to atmospheric circulation. In this study, we analyze the wind direction at the potential measurement sites to assess suitable locations for detecting the effect of urban forests on air quality in five cities (i.e. Gwangju, Daegu, Busan, Incheon, and Ilsan). This technical note suggests effective locations of in-situ measurements by considering main wind direction in the five cities of this study. A measurement station network created in the future based on the selected locations will allow quantitative measurements of PM concentration and BVOCs emitted from the urban forest and help provide a comprehensive understanding of the forest capabilities of reducing air pollution.

무등산 숲과 도심에서 휘발성유기화합물질의 분포 특성 (Distribution characteristics on volatile organic compounds at the forest of Mt. mudeung and downtown)

  • 이대행;박강수;이세행;송형명;이기원;정희윤;서광엽;조영관;김은선
    • 분석과학
    • /
    • 제28권3호
    • /
    • pp.246-254
    • /
    • 2015
  • 무등산 탐방로 8개 지점과 도심 1개 지점에서 2013~2014년에 자연 기원 휘발성유기화합물질 (BVOCs)과 인위적인 휘발성유기화합물질 (AVOCs)의 분포특성을 GC-MSD를 사용하여 조사하였다. 자연기원 휘발성유기화합물인 테르펜 발생량은 편백숲인 PA 지점이 821 pptv으로 가장 높았고, WH 지점이 785 pptv, NZ 지점이 679 pptv, DJ 지점이 513 pptv, JB 지점이 476 pptv, SS 지점이 464 pptv 순으로 조사되었다. 테르펜은 지점별로 11~15 종이 검출되었는데, 5월에 PA 지점에서는 α-pinene이 20%로 가장 높고, coumarin, sabinene, phellandrene, myrcene, borneol, eucalyptol, β-pinene, cymene, δ-limonene, γ-terpinene, camphor, camphene, mentol 순이었다. 인위적인 휘발성유기화합물질(AVOCs)은 5~7월에 숲 8개 지점에서 0.74~2.52 ppbv 이었고, 도심(JW 지점)에서는 3.14 ppbv로 나타나 도심/산림 비율은 1.9~4.0로 도심지역이 높았다. JW 지점에서 벤젠과 톨루엔만 합한 농도는 평균 2.37 ppbv로 AVOCs 10항목 전체의 75%를 차지했다. 6월 중 AVOCs 종별 분포조사 결과, 숲인 DJ 지점에서 toluene이 44.1%로 가장 많았고, 도심인 JW 지점에서도 toluene이 53.1%로 가장 많았다. 또한, 숲에서 AVOCs와 BVOCs 농도의 상관성 분석 결과, 양의 상관계수가 0.328이나 유의인자(p)는 0.184로서 통계적으로 유의하지 않는 것으로 나타나 숲에서의 AVOCs는 도심에서 영향을 받은 것으로 추정된다.

제주지역 주요 침엽수에서 배출되는 VOCs 배출특성 (A study on Emission Rates of VOCs from Conifers at Jeju Island)

  • 김형철;이기호
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.627-637
    • /
    • 2010
  • Emission rate of monoterpene and isoprene was measured in five commonly growing tree species of conifers(Pinus thunbergii, Abies koreana, Cryptomeria japonica, Pinus densiflora, Chamaecyparis obtusa) at the Halla mountain sites. Dynamic flow enclosure technique was used and gas samples were collected into Tenax tube. The highest and lowest hourly emission rate was observed in Abies koreana (1.86 ${\mu}g$/gdw/hr) and Chamaecyparis obtusa (0.52 ${\mu}g$/gdw/hr), respectively. The major species of monoterpene from pine trees were ${\alpha}$-pinene, ${\beta}$-pinene, ${\beta}$-phellandrene, myrcene. Particularly, d-limonene was abundant in Abies koreana but ${\alpha}$-pinene, $d^3$-carene and sabinene was in Cryptomeria japonica. Emission rates of isoprene show less significant than those of monoterpene. And also seasonal emission rates of monoterpene were dependent on environmental factors such as temperature.

아이소프렌 일차표준가스의 제조 및 특성 평가 (Preparation and characterization of the primary gas standards for isoprene)

  • 김태수;강철호;김용두;이승호;김달호
    • 분석과학
    • /
    • 제27권6호
    • /
    • pp.357-363
    • /
    • 2014
  • 아이소프렌은 자연기원의 휘발성 유기화합물 (BVOCs) 중의 하나로 대류권 오존 생성 및 포름알데히드의 근원으로 알려져 있다. 또한, 아이소프렌은 호흡가스에 포함된 미량 성분으로 폐암과 같은 질병의 진단마커로 사용되기도 하기 때문에 대기 중 아이소프렌의 정확한 측정을 위해 신뢰성 있는 가스 표준물질이 요구되고 있다. 본 연구에서는 아이소프렌 측정용 일차표준가스의 개발을 위해 중량법에 의한 제조 및 특성평가를 수행하였다. 독립적으로 제조한 일차표준가스들의 농도를 가스크로마토그래프-불꽃이온화검출기(GC-FID)로 비교하여 0.01%의 순도를 포함한 중량법에 의한 제조 불확도와 0.08% 수준의 제조 재현성을 확인하였다. 제조한 일차표준가스는 14개월간 동안 1.3% 수준의 안정성을 보였다. 원료의 순도, 질량측정(질량값), 제조 재현성, 흡착성 및 장기 안정성을 모두 고려하여 결정한 $10{\mu}mol/mol$ 수준 아이소프렌 일차표준가스 인증값의 상대 확장불확도는 2.8%(95%의 신뢰수준, k=1.96)이었다.

대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발 (Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol))

  • 강지환;김미언;김용두;이영우;이상일
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.