• Title/Summary/Keyword: BTMSE

Search Result 3, Processing Time 0.017 seconds

Characterization of Electrical Properties on Cu Diffusion in Low-k Dielectric Materials for ULSI Interconnect (반도체 배선용 저 유전 물질에서의 구리 확산에 대한 전기적 신뢰성 평가)

  • Lee Hee-Chan;Joo Young-Chang;Ro Hyun-Wook;Yoon Do-Young;Lee Jin-kyu;Char Kook-Heon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.9-15
    • /
    • 2004
  • We investigated the electrical properties of copolymer low-k materials that are compromised of the PMSSQ(Poly Methyl Silsesquioxane)-based matrix with the BTMSE (Bis Tri Methoxy Silyl Ethane) additives. We manufactured MIS-type test samples using the copolymer as the insulator and measured their leakage current and failure time by means of the BTS (bias-temperature-stress) test. The failure time was observed to decrease drastically when the porosity of the copolymer was increased over $30\%$. From the measurement of failure time with respect to temperature. the activation energy of Cu drift through the copolymer was calculated to be 1.51 eV.

  • PDF

유기실리카와 나노기공형성 수지의 상용성 변화에 의한 나노기공의 구조 변화

  • 차국헌;최연승;김상율;진문영
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.52-52
    • /
    • 2002
  • Recently, nanoporous low-k materials using porogen (pore generating material) template method have gained much attraction due to the feasible advantage of dielectric constant decrease with the increase of porogen content, which is burning out and making air void by thermal curing. In nanoporous thin films, further, control of pore size and its distribution is very important to retain suitable thermal, mechanical and electrical properties. In this study, nanoporous low-k films were prepared with MTMS-BTMSE copolymer and porogen. The effect of interaction of copolymer matrix and porogen on pore size and distribution was comparatively to investigate with molecular structure and end functional group. The characterization of nanoporous thin film prepared was also performed using various techniques including NMR, GPC, Ellipsometer, FE-SEM, TGA, and FT-IR.

  • PDF

Solution-Processed Gate Insulator of Ethylene-Bridged Silsesquioxnae for Organic Field-Effect Transistor (OTFT용 용액공정의 에틸렌-브리지드 실세스퀴옥산 게이트 절연체)

  • Lee, Duck-Hee;Jeong, Hyun-Dam
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 2010
  • Ethylene-bridged silsesquioxane resins were synthesized from two monomers: 1,2-bis(trimethoxysilyl)ethane and methyltrimethoxysilane. The silsesquioxane thin films were spin-coated from the copolymerized resins on silicon wafer. Metal insulator metal (MIM), metal insulator semiconductor (MIS) devices were utilized to investigate the electrical properties of the copolymerized thin films. As the films were inserted as gate insulator in the OTFT devices, the field effect mobilitites were evaluated by employing Poly(3-hexylthiophene) (P3HT) as organic semiconductor, which shows that their dielectric properties and mobility values are dependent on the molecular structures and Si-OH concentration involving in the films.