• Title/Summary/Keyword: BTB dc link

Search Result 4, Processing Time 0.019 seconds

On Control Strategies for BTB Converters for Enhancement of Interface Flow Margins (융통전력 여유 향상을 위한 BTB 컨버터 제어 전략 수립)

  • Ohn, Sung-Min;Song, Hwa-Chang;Jang, Byong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.374-375
    • /
    • 2011
  • This paper presents a method to determine parameters of BTB (back-to-back) converters in terms of the enhancement of interface flow margins. Interface flow margin is by definition a measure of how much active power can be transferred from the external areas to the study area with the fixed load demand, and it is mainly constrained by system voltage stability. BTB converters are controllable equipments with the active power flow through them, and its DC link in fact can divide the AC systems at the location and hence can reduce the fault current level. This paper first cals margin sensitivities at the nose point of F-V curves and formulates an optimization problem to update the BTB parameters to improve the margins. This procedure is repeated performed until the required margin enhancement is achieved.

  • PDF

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

Hardware Simulator for LVRT Operation Analysis of Grid-Tied PMSG Wind Power System (계통연계형 PMSG 풍력발전시스템의 LVRT 동작 분석을 위한 하드웨어 시뮬레이터)

  • Lee, Jae-Wook;Kim, Jae-Hyuk;Choi, Young-Do;Han, Byung-Moon;Yoon, Young-Doo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1219-1226
    • /
    • 2014
  • This paper introduces a hardware simulator for the LVRT operation analysis of the grid-tied PMSG wind power system with a power dissipation circuit. The power dissipation circuit, which is composed of chopper and resistor, suppresses the sudden increase of DC-link voltage in the back-to-back converter of the grid-tied PMSG wind power system. The LVRT operation was first analyzed using computer simulations with PSCAD/EMTDC. A wind power simulator including the power dissipation circuit and the fault simulator composed of variac and IGBT were built to analyze the LVRT operation. Various experiments were conducted to verify the effectiveness of the power dissipation circuit for the LVRT operation. The developed hardware simulator can be extensively utilized for the analysis of various LVRT operations of the grid-tied wind power system.