• Title/Summary/Keyword: BS(Base Station)

Search Result 281, Processing Time 0.047 seconds

A Performance Simulation for Call Capacity of Base Station in CDMA Mobile System (CDMA Mobile System의 Base Station호 처리 용량 성능 시뮬레이션)

  • Lee, Dong-Myeong;Jeon, Mun-Seok;Lee, Cheol-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1253-1261
    • /
    • 1996
  • The base station (BS) of CDMA mobile system (CMS) provides mobile call services by controlling call processing functions. The call Processing part of the BS is divided into two components; the base station transceiver subsystem (BTS) and the base station controller (BSC). In this paper, we present the call capacity estimation of the BS about control signals and traffic data of calls by the simulation, and find the bottleneck points and problems which may occur in the BS. In order to estimate the call capacity, first we extract the major parameters for the modeling the BS. Second, we suggest the simulation model for the BS. Third, we estimate the simulation results by finding major objective factors such that the call blocking probability, the utilization ratio and the delay time in the traffic channel elements (TCEs), the BTS interconnection network (BIN)-COMA interconnection network (CIN) trunks, the transcoding channels and the CIN packet router.

  • PDF

Fast Group Scanning Scheme in IEEE 802.16e Networks (IEEE 802.16e에서 그룹 기반의 빠른 스캐닝 기법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.624-634
    • /
    • 2008
  • The mobile station which is about to do handover in IEEE 802.16e networks scans its neighboring base station channels to decide its next target base station. However, due to the lack of location information of its subscribers, the serving base station cannot provide any reliable candidate channel which is actually attachable by the scanning mobile stations, which makes the mobile station suffer from the long scanning time. Sometimes, long scanning time may cause the degradation of quality of service due to repeatable scan-duration or failure to start the handover procedure in time. To overcome these problems, in this paper, we propose a new protocol so called fast group scanning scheme, in which multiple mobile stations form a group to scan their neighboring base station channels simultaneously. Main contribution of this proposal is to find and decide a reliable target base station within a short scanning time. The fast group scanning scheme can be deployed to the cell network of the serving base station with a dynamic neighboring base station list management.

Development of the Base Station Controller and Manager in the CDMA Mobile System

  • Ahn, Jee-Hwan;Shin, Dong-Jin;Cho, Cheol-Hye
    • ETRI Journal
    • /
    • v.19 no.3
    • /
    • pp.141-168
    • /
    • 1997
  • The base station (BS) in the CDMA Mobile System (CMS) connects calls through the radio interface and is designed to provide mobile subscribers with high quality service in spite of mobile subscribers motions. The BS consists of multiple base station transceiver subsystems (BTSs), a base station controller (BSC) and a base station manager (BSM). This paper is concerned with the BSC and the BSM. The BSC is located between the BTSs and the mobile switching center (MSC) connected with the public network, and to mobile subscribers via the BTSs. The BSM provides operator-interfaces per the BS and takes responsibility of operation and maintenance (OAM) of the BS. Design of the BSC is based on two module types: functional module and unit module. The functional module is used to support new services easily and the unit module to increase the system capacity economically. Both modular types are easily achieved by inserting the corresponding modules to the system. Particularly, in order to efficiently support the soft handover which is one of CDMA superior advantages, the BSC adopts a large high-speed Packet switch connecting up to 512 BTSs, and thus mobile subscribers can be provided with soft handover in high probability. The BSM is based on a commercial workstation to support OAM functions efficiently and guarantee high reliability of the functions. The BSM uses graphical user interface (GUI) for efficient OAM functions of the BS.

  • PDF

Base Station Placement for Wireless Sensor Network Positioning System via Lexicographical Stratified Programming

  • Yan, Jun;Yu, Kegen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4453-4468
    • /
    • 2015
  • This paper investigates optimization-based base station (BS) placement. An optimization model is defined and the BS placement problem is transformed to a lexicographical stratified programming (LSP) model for a given trajectory, according to different accuracy requirements. The feasible region for BS deployment is obtained from the positioning system requirement, which is also solved with signal coverage problem in BS placement. The LSP mathematical model is formulated with the average geometric dilution of precision (GDOP) as the criterion. To achieve an optimization solution, a tolerant factor based complete stratified series approach and grid searching method are utilized to obtain the possible optimal BS placement. Because of the LSP model utilization, the proposed algorithm has wider application scenarios with different accuracy requirements over different trajectory segments. Simulation results demonstrate that the proposed algorithm has better BS placement result than existing approaches for a given trajectory.

Performance Analysis of Adaptive RS Coverage Extension Scheme for the MMR systems (MMR 시스템을 위한 적응적인 RS 커버리지 확장 기법의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.584-591
    • /
    • 2010
  • In this paper, we propose an adaptive Relay Station (RS) coverage extension scheme for the Mobile Multi-hop Relay (MMR) systems. The MMR system with a non-transparent mode RS can be used to extend BS coverage using the remaining capacity of the Base Station(BS). Thus, the call blocking may occur in RSs when calls arrive very often in Multi-hop Relay Base Station (MR-BS). In the proposed scheme, RSs can be connected to the neighbor MMR system as the 2ndtier RSs if the neighbor MMR system services low traffic load when calls are frequently arrived in MR-BS or RSs. By doing so, the MMR system can accept a new call without call blocking. Through numerical results, we demonstrate that the proposed scheme outperforms the conventional MMR system in terms of the throughput and call blocking probability of MMR systems.

Two-Stage Base Station Sleeping Scheme for Green Cellular Networks

  • Yang, Juwo;Zhang, Xing;Wang, Wenbo
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.600-609
    • /
    • 2016
  • In this paper, we propose a two-stage base station (BS) sleeping scheme to save energy consumption in cellular networks. The BS sleeping mode is divided into a light sleeping stage and a deep sleeping stage according to whether there is a user in the BS's coverage. In the light sleeping stage, a BS will retain its coverage and frequently switch between the on state and the doze state according to the service characteristics. While in the deep sleeping stage analysis, the BS will shut down its coverage, and neighbor BSs will patch the coverage hole. Several closed-form formulas are derived to demonstrate the power consumption in each sleeping stage and the stage switching conditions are discussed to minimize the average power consumption. The average traffic delay caused by BS sleeping and the average deep sleeping rate under a given traffic load have also been studied. In addition, it is shown that BS sleeping is not always possible because of the limited quality of service (QoS) requirements. Simulation results show that the proposed scheme can effectively reduce the average BS power consumption, at the cost of some extra traffic delay. In summary, our proposed framework provides an essential understanding of the design of future green networks that aim to take full advantage of different stages of BS sleeping to obtain the best energy efficiency.

Performance Analysis of Mobile Multi-hop Relay Uplink System in Multicell Environments (멀티셀 환경에서 Mobile Multi-hop Relay 상향링크 시스템의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.394-400
    • /
    • 2010
  • Mobile Multi-hop Relaying (MMR) system can provide increased system capacity of wireless access network by coverage extension and enhanced transmission rate within the Base Station (BS) coverage area. The previous researches for the MMR system with a non-transparent mode Relay Station (RS) do not consider channel selection procedure of Mobile Station (MS), co-channel interference and Multi-hop Relay Base Station (MR-BS) coverage and RS coverage ratio in MMR system. In this paper, we investigate the performance of MMR uplink system in multicell environments with various topologies. The performance is presented in terms of call blocking probability, channel utilization, outage probability and system throughput by varying offered load. It is found that, for certain system parameters, the MMR uplink system achieve the maximum system throughput when MR-BS coverage to RS coverage ratio is 7.

Base Station Processing Capacity in Wireless Multimedia Networks (무선 멀티미디어 서비스를 위한 기지국 설계용량 분석)

  • Jang, Hee-Seon;Cho, Kee-Sung;Kim, Young-Bu
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.121-127
    • /
    • 2004
  • In this paper, we present the base station(BS) processing capacity to provide the multimedia services in IMT-2000 wireless communication network. The IMT-2000 services are classified into two types, circuit and packet services, and user‘s environments such as indoor, pedestrian and vehicle are considered. Using the parameters of service economics and wireless technology, the user's reference traffic and BS‘s traffic are computed. The traffic is measured by throughput(kbps). Based on the measured traffic, the accommodating users in BS are also evaluated. In addition to, the BS design capacity is presented for varying the number of users and traffic distribution in different user's environments.

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

A channel assignment scheme for reducing call blocking rate in DS-CDMA cellular systems (DS-CDMA 셀룰라 시스템에서 호 차단률 개선을 위한 채널 할당 방식)

  • 전형구;황선호;권수근;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1075-1082
    • /
    • 1997
  • In this paper, we propose a channel assignment scheme for reducing call blocking rate in a base station(BS) of DS-CDMA cellular systems. The proposed scheme can e applied to the case where the capacity of reverse radio link is enough, but not are the available traffic channels performing the digital modulation and demodulation functions between a mobile station and the base station. The proposed scheme takes advantage of the feature of soft handoff in which a mobile station keeps its communication link even if one of the two communication links is released. The scheme estimates the mean and variance of the received power level measured at the base station before assigning a traffic channel for a new call request. The BS makes decision based on the estimated balues whether the new call request will be accepted or not. If it is decided that the capacity of reverse radio link is enough, but all traffic channels are not available, then the BS increases the soft handoff parameter T_DROP to release the traffic channels of mobile stations loactedin soft handoff area. The BS assigns the released traffic channel to anew call or a handoff call. The performance of the proposed channel assignment scheme is evaluated by computer simulation. The results show that the call blocking rate for new calls and handoff calls is reduced.

  • PDF